
Juraj Hromkovič, Richard Královič,
Jan Vahrenhold (Eds.)

ISSEP2010

Proceedings of Short

Communications

4th International Conference on Informatics
in Secondary Schools: Evolution and Perspectives

Zürich, Switzerland, January 13–15, 2010

Editors

Juraj Hromkovič
Richard Královič
ETH Zürich
Informationstechnologie und Ausbildung
CAB F16, F13.1
Universitätstrasse 6
8092 Zürich, Switzerland
E-mail: {juraj.hromkovic, richard.kralovic}@inf.ethz.ch

Jan Vahrenhold
Technische Universität Dortmund
Foundations of Computer Science and

Computer Science Education Group
Chair of Algorithm Engineering
Faculty of Computer Science
Otto-Hahn-Str. 14
44227 Dortmund, Germany
E-mail: jan.vahrenhold@cs.tu-dortmund.de

Cover design: Jan Lichtensteiger

ISBN: 978-3-909386-28-4

Published by ETH Zürich, 2009

Preface

The International Conference on Informatics in Secondary Schools:
Evolution and Perspectives (ISSEP) is an emerging forum for researchers
and practitioners in the area of computer science education with a focus
on secondary schools.

The ISSEP series started in 2005 in Klagenfurt, and continued in
2006 in Vilnius, and in 2008 in Toruń. The 4th ISSEP took part in
Zurich. This volume presents 9 short communications presented at
ISSEP 2010.

The ISSEP conference series is devoted to all aspects of computer
science teaching. In the preface of the proceedings of ISSEP 2006,
R. Mittermeir wrote: “ISSEP aims at educating ‘informatics proper’
by showing the beauty of the discipline, hoping to create interest in a
later professional career in computing, and it will give answers different
from the opinion of those who used to familiarize pupils with the basics
of ICT in order to achieve computer literacy for the young generation.”
This is an important message at this time, when several countries have
reduced teaching informatics to educating about current software pack-
ages that change from year to year. The goal of ISSEP is to support
teaching of the basic concepts and methods of informatics, thereby
making it a subject in secondary schools that is comparable in depth
and requirements with mathematics or natural sciences. As we tried
to present in our book “Algorithmic Adventures. From Knowledge
to Magic,” we aim at teaching informatics as a challenging scientific
discipline, full of puzzles, challenges, magic and surprising discoveries.
Additionally, this way of teaching informatics is also a chance to import
the concept of engineering to schools, by merging the mathematical an-
alytic way of thinking with the constructive work of engineers in the
education of one subject.

To underline informatics as well as informatics didactics as scientific
disciplines, ISSEP 2010 had two special tracks. The track “Contribu-
tions of Competitions to Informatics Education” was based on the fact
that taking part in different kinds of competitions provides a valuable
contribution to knowledge acquirement and supports the development
of problem-solving skills in a creative way. Organizing a competition
includes addressing the following questions:

iv

• Which kinds of competitions are especially well suited for achiev-
ing which goals?

• How should one create and choose tasks and rules for such com-
petitions?

• What are the achievements of the competition participants, in
particular in relation to their training process?

• What is the influence of competitions on the educational pro-
cesses in secondary education?

The starting point to this track was provided by the invited talk
“Sustaining Informatics Education by Contests” by Valentina Dagienė.

The second track, “Empirical Research,” pointed out that the com-
munity of computer science didactics has to strengthen its effort in
empirical research in order to be as serious as the didactics of mathe-
matics and physics are. The main questions posed were:

• What is “good empirical research?”

• Which rules should be followed to produce “good” empirical re-
sults?

• Which criteria can be applied to recognize “good” empirical re-
sults?

• What are the pitfalls of interpreting empirical results?

To make ISSEP 2010 attractive due to high-quality contributions,
we increased the number of invited speakers to six. In addition to
Valentina Dagienė (Vilnius), we invited the internationally leading
experts Wilfried Bos (Technische Universität Dortmund), David Gi-
nat (Tel Aviv University), David Gries (Cornell University), Allen B.
Tucker (Bowdoin College), and Amiram Yehudai (Tel Aviv University)
to give talks about different aspects of computer science education.

The program committee of ISSEP 2010 consisted of:

• Peter Antonitsch (University of Klagenfurt)

• Owen L. Astrachan (Duke University)

v

• Ralph-Johan Back (Abo Akademi University)

• Harry Buhrman (CWI & University Amsterdam)

• Valentina Dagienė (Institute of Mathematics and Informatics,
Vilnius)

• Judith Gal-Ezer (The Open University of Israel)

• David Ginat (Tel Aviv University)

• Juraj Hromkovič (ETH Zürich)

• Peter Hubwieser (TU München)

• Ivan Kalaš (University Bratislava)

• Peter Micheuz (University Klagenfurt)

• Roland Mittermeir (University Klagenfurt)

• Wolfgang Pohl (Bundeswettbewerb Informatik)

• Ulrik Schroeder (RWTH Aachen)

• Jarkko Suhonen (University of Joensuu)

• Maciej M. Sys lo (UMK Torun, University of Wroclaw)

• Jan Vahrenhold (TU Dortmund)

• Tom Verhoeff (TU Eindhoven)

• Michal Winczer (UK Bratislava)

I would like to express my deepest thanks to all members of the Pro-
gram Committee for serving and thus contributing to the high standard
of the ISSEP series among the conferences devoted to computer science
education.

November 2009 Juraj Hromkovič

vi

Table of Contents

Peter Antonitsch:
From Object-Orientation to Human-Centeredness 1

Peter Antonitsch, Andrea Grossmann and Peter Micheuz:
Beaver, Kangaroo and Classroom Situations: A Promis-
ing Symbiosis . 16

Jonas Blonskis and Valentina Dagienė:
Maturity Exam in Programming for a High School: Tasks
Developing and Evaluation Approaches 32

Nataša Grgurina and Lars Tijsma:
Game Maker Workshop 48

Eugenijus Kurilovas and Silvija Serikoviene:
Personalisation of Learning Objects and Environments
for Informatics Science Education in Lithuania 52

Peter Micheuz:
Reflections on Software Tools in Informatics Teaching . 73

Noa Ragonis and Orit Hazzan:
A Reflective Practitioner’s Perspective on Computer Sci-
ence Teacher Preparation 89

Ralf Romeike and Andreas Schwill:
The Development of a Regional CS Competition 106

Lothar Schäfer, Hans-Stefan Siller and Florian Strasser:
Modern Web Development in Schools 117

From Object-Orientation to Human-
Centeredness

Peter K. Antonitsch

Alpen-Adria Universität Klagenfurt
Institut für Informatiksysteme

Peter.Antonitsch@uni-klu.ac.at

Abstract. A particular learning situation is determined by the
learning content, the social context of the learning community,
and the individual disposition of the learner. Although
Informatics didactical research starts to recognize the
importance of situated cognition, yet principal interest is taken
in development and analysis of artifacts that foster the learning
of Informatics. The individual human actor as determining
constituent of the learning process is close to being neglected.
Proceeding from a self-reflective experience and combining older
findings in Mathematics and Informatics didactics with the

�author s experiences, this article points at ways to direct
attention towards the »human factor« in learning Informatics.

In schools, learning processes are supposed to take place
permanently. Students are confronted with new material, thoughts,
and corresponding activities. Some of the students join in, others do
not. In Informatics classes, the reasons for not joining in can be
manifold: It could be due to social issues inside the learning group,
the potential learner could find the learning content inappropriate, or
the provided tools might seem too complex. In most cases, we simply

�don t know which case holds.

2 Peter Antonitsch

1 A Self-Reflective Approach
Teaching and reflecting should go together ([1], p. 57). Teachers are

�supposed to reflect upon their own teaching and upon the student s
learning progress to coach them best possible. But it is not common

�practice yet, that teachers care for the student s individual learning
process and problems, or guide learners to become aware of their
learning habits by themselves. To me, self-reflection revealed the
importance of these aspects.

1.1 The Issue: Microsoft Office Excel and Open Office Calc
Combined with Visual Basic for Applications (short: VBA) Microsoft
Excel can serve as a scalable learning environment for first
programming experiences. Therefore VBA has been my preferred tool
to teach programming basics during the past few years, following a
grown course-plan with scalability of in- and output as one of its key
features: In programmable spreadsheet-environments in- and output
can be managed by means of cell-access, predefined GUIs or by user-
defined dialogs. Keeping basic operations as easy as possible was the
didactical motive [2].

What to do, when literally out of a sudden (but fortunately at
the beginning of a new school year) the school-licence for Microsoft
Office was cancelled and teachers were advised to use the OpenOffice
suite instead? Of course, as Microsoft Excel and OpenOffice Calc
seem almost identical from the outside, the adaption of the tried
concept was the choice of the moment. But I found out soon, that
OpenOffice Basic (short: OOB) provides no predefined command to
access cell-content. Furthermore, OOB necessitates the creation of an
abstract »Universal Network Object« to display a user-dialog that
already has been designed within the visual environment.

Therefore, the intended exchange of the software-tool seemed to
replace simplicity for the learners by complex navigation through the
hierarchy of objects. This (and some other) »didactical deficiencies1«

1 �It is fair to note, that the provided structure has shortcomings from the learners
�point of view, but makes quite sense from a programmers point of view (see [3] for

From Object-Orientation to Human-Centeredness 3

defined a setting which is supposed to be typical for learning
situations in Informatics classes:
• There was a (seemingly) well defined task � adapting the course

plan to allow a smooth introduction to programming basics with
OpenOffice Basic.

• The task had to be accomplished within a certain period of time �
at least as soon as the programming units were about to start.

• The tool to accomplish the task was provided � OpenOffice Calc
with OOB.

• �A secondary problem proved to be the true challenge getting on
well with the tool (to provide software abstractions hiding the
complex hierarchy of objects).

• I (the »learner«) had no idea how to deal with the challenge (in
the first place).

1.2 The Tool and the Learner
When learning Informatics, it is not uncommon that tools provided
to solve a problem become part of the problem. It is also not
uncommon to blame it on the tools. Self-reflection started, when I
asked whether I myself was a part of the problem, too.

In the situation outlined before, I realized that my programming
strategies developed with VBA were not applicable to programming
with OOB: VBA makes it easy to deal with spreadsheet-objects of
any kind. Below a certain level, programming with VBA requires
little comprehension of the underlying hierarchy of objects: Objects
appear to be organized within a flat hierarchy, and therefore all
relevant VBA-objects and basic properties seem to be accessible
»from everywhere and all the time«. On the contrary, adapting OOB
meant to make use of (parts of) the object-hierarchy. In short: My
mental model had to be updated, and: The »update« enabled me to
accomplish the task.

hints how to improve the Open Office Basic programming-environment for learning
purposes).

4 Peter Antonitsch

What did this experience mean to me? On second thoughts and
having the interrelation between the learner and the learning
situation in mind, the process of self-reflection suggested that it was
irrelevant at that point, which of the both environments is the better
choice when teaching programming fundamentals. It was even beside
the point, whether the mental model on hand was good or bad, right
or wrong. The key point was that the mental »working model« that
had proven viable up to that moment did not match the new setting.

1.3 The Human Factor
Usually problems accompanying the learning process become visible
at object-level, when the learner is not able or willing to manage the
learning content and/or the tools the way he or she is supposed to.
To me, self-reflection unveiled a close connection between the learner
and the learning: Learning connects two »states of mind« represented
by the specific mental models before and after the learning process.
Additionally, the actual mental model of the learner can interfere
with the learning process. Constructivism confirms this personal

�finding [4]: The learner s perception of the world determines the
individual approach to a posed problem, the learning progress and
the errors that accompany learning. Consequently, the learner is the
inevitable »human factor« that has to be considered when looking at
learning processes. Furthermore, self-reflection reveals the teacher as
another component of this human factor. Neglecting (although not

�underestimating) the learner s private surroundings this yields four
main constituents of each learning process (Fig. 1).

2 Considering the Human Factor in Informatics
Classes
Didactical literature reports different strategies to focus on the

�learner s individual approach to a given problem. Among them,
interviews are the tools of choice to investigate the process of
reasoning, especially when reasoning leads to errors.

From Object-Orientation to Human-Centeredness 5

In 1980 P. Rosnick and J. Clement investigated the types and
source of errors at translation of Mathematical texts into formulas by
means of a tutoring strategy including interviews [5]. Solving

�problems like Write an equation for the following statement: There
are six times as many students as professors at this university. Use S

�for the number of students and P for the number of professors. led
� �to translation errors (6S = P) that proved robust against

explanations by the tutors. A possible source for this error was
� �identified by R. Davis, who pointed at commonlyshared frames

that might be used by students when dealing with problems of that
kind [6].

Similar investigations in the field of Informatics were conducted
by E. Soloway et al. concentrating on translation errors by novice

�programmers. They identified faulty/incomplete understanding of
�programming concepts to be one of the sources for errors when

learners translate textual problems into program code [7], but also
��pointed out that [] for most computerized tasks there is some

Fig. 1. »Learning tetrahedron« including four main constituents of learning
processes at school and laying emphasis on the »human factor«. The arrows
denote mutual dependences that (usually) lead to interactions (the dashed
connection between content and teacher does not indicate a less important
dependence but should produce a three-dimensional impression, placing the
learner into the foreground). The reflexive learner-learner and teacher-teacher
dependences have a twofold meaning: Learning humans tend to interact with
each other, and on the other hand every learning process requires interaction
of the learner (and the teacher) with himself!

6 Peter Antonitsch

model that a novice will use in his or her first attempts. We need to
understand when is it appropriate to appeal to this model, and, when

�necessary, how to move a novice to some more appropriate model.
[8].

These findings stress the importance of mental models (or
»frames of thought«) to understand individual learning paths and,
consequently, to focus on the human factor. But how can the

�teaching practitioner learn about the learners mental models?

2.1 Predicative and Functional Cognitive Structures

Fig. 2: Survey of predicative versus functional cognitive structures relating
to algorithmic thinking (source: [9]).

Researchers in Cognitive Mathematics discovered two different
cognitive structures that control the transfer of an external given
problem into an internal representation, and that therefore represent

�(basic) mental models. I. Schwank states [9]: We distinguish between
a predicative structure, which is more concentrated on networks of

From Object-Orientation to Human-Centeredness 7

relations and structures, and a functional structure, which lays
preference on thinking in terms of effects and organizing sequences of

�actions. (see Fig. 2).

Depending on the preferred cognitive structure, people develop
different perspectives onto a given problem and its possible solution.
Predicative cognitive structure favours the mutual substitution of
single items (»static exchange«), while functional cognitive structure
supports to move or add items (»dynamic exchange«) [10]. Due to
this correspondence it was feasible to develop easy-to-use tasks
helping to decide upon the preferred cognitive structure. Among
other diagnostic tools, I. Schwank and her research team used tasks
�to find a missing figure, which fits suitably into a set of 8 given

�figures arranged in a matrix. [11] (Fig. 3).

Fig. 3: »Fitting into matrices«-tasks: The left-hand task could be solved
using a predicative or a functional analysis, while the right-hand task
definitely privileges a predicative one [12].

2.2 A Personal Experience: Cognitive Structures and
Databases
Although cognitive structures have been identified with regard to
algorithmic thinking, they seem to have attracted almost no

8 Peter Antonitsch

attention among Informatics didacts2. I came across the framework of
cognitive structures when musing on the question why certain
students that perform poorly in programming courses get on well
with databases (and vice versa). Then, programming was procedural
yet and I considered dealing with procedures as thinking in processes,
while representing databases by means of ER- or UML-diagrams
seemed to be rather predicative.

I assumed that students, who find it hard to »grasp the
structure« of (procedural) programs, possess a rather predicative
cognitive structure, and (quite symmetrically) that students, who
have difficulties to »find their way« through the static structure of
relational databases, possess a rather functional cognitive structure.
To put this assumption to the test, I handed out some »fitting into
matrices«-tasks and instructed the students not only to fill in the
missing figure but also to write down their arguments why it fits in.
The presentation and discussion of considered solutions, combined
with observations from the preceding programming-lessons and the
subsequent »traditional«3 database-lessons proved the conjecture
qualitatively right.

This encouraged me to think of ways to open »usual«
representations in Informatics to both the predicative and the
functional cognitive structure. The first attempt was to allow a
functional approach to databases, which led to a novel pattern for
database instruction guiding my database lessons until today:
Proceeding from a rather complex but ready-to-use (Access) sample-
database, the students are guided to explore its structure by »moving
in the relational model« and by »processing relations« in order to
collect the information that is needed for a special query, all by
themselves (see [15, 16] for a more detailed description). On the other
hand, as the sample-database is represented by a (static) UML-

2 Publications that refer to cognitive structures AND consider an Informatics point
of view originated within the research group of Cognitive Mathematics at the
University of Osnabrück/Germany (see [15], [16], for instance).

3 Here, »traditional« denotes the common sequence of »designing a (static)
�conceptual model« »transforming that model into a (static) relational data

�model« »querying the database«.

From Object-Orientation to Human-Centeredness 9

diagram, this pattern allows for the predicative approach as well.
Judging form the success of this concept, opening learning situations
to a »dual approach« pays off: While solving common problems with
the same software tool as ever, Students become more active learners
when the design of the problem supports their cognitive structure:
The learning results improve.

2.3 Cognitive Structures and Programming
Database lessons can be enriched by adding functional elements to
common problem representation. But are there further traces of
functional and predicative elements in Informatics classes? I suppose,

� � �the answer is yes : In the last few years »click n code« programming
environments like Lego NXT-G or Scratch have become quite
popular. Although not documented, these environments seem to
support a predicative and a functional point of view as well! The
coding of a program no longer rests on textual representation, but
programs are put together with provided »programming-bricks« (see
Fig. 4). These programming-bricks might be viewed as static
elements that can »stick together« in certain ways, while a single
program might be seen as some pattern being made of theses static
elements and providing a certain functionality. On the other hand,
the programming-bricks might be regarded as dynamic elements,
each of which provides a certain functionality. Then, particular
»cooperation« of these functional parts constitutes another dynamic
element that is called program4. This functional point of view is
supported by visually represented objects (sprites, robots) that can
be animated by means of a program.

4 As both programming environments foster object oriented thinking, it is fair to
note, that object-oriented programming per se seems to offer a blend of predicative
and functional elements: While a UML diagram used for object oriented design is a
rather static (and therefore predicative) representation of the programming
project, methods represent the (functional) aspect of dynamic change (of an
objects state). But these aspects represent different levels of abstraction! On the
other hand, both Scratch and Lego NXT-G mainly focus on methods, adding the
predicative aspect at the level of the functional aspect.

10 Peter Antonitsch

Fig. 4: Programming environment (Scratch) where predefined programming-
bricks (left) are combined to build a program (right). The programming-
bricks can be seen as static elements that form a pattern providing
functionality (predicative approach) or as functional parts that cooperate to
produce another, bigger functional structure (functional approach).

2.4 Interaction Patterns in Informatics Classes and
Cooperative Learning
From personal experience, the concept of cognitive structures helps
to understand learning problems that become visible at »object
level« but originate in misconceiving. Furthermore, it enables the
teacher to modify learning content to meet the preferences of most
learners, or to identify software tools that might have the potential to
promote individual learning paths.

These are prerequisites to focus on the human factor in
Informatics classes. Enabling the students to tackle problems in an
individual way empowers them to solve problems by working in
groups and by working on their own (i.e. without constant guidance
by the teacher). Such learner-centred classroom organization fosters

�individual learner-teacher-interaction and the teacher s monitoring of
learner-learner-, learner-content- and learner-tool interaction. But we
have to be careful! »Learner-centred« is not necessarily equivalent to
»learning-centred«. This shall be illustrated by an observation
originally published in [17]:

From Object-Orientation to Human-Centeredness 11

In the course of an Informatics lesson that was given by a pre-
service teacher the students had to work on a problem concerning

�Caesar s cipher. During a learner-centred sequence, when the
students had to provide a certain spreadsheet-solution, a student

��asked for help, pointing and looking at the computer screen: []
�There, that does not work . The pre-service teacher gave the clue:

�Here, [pointing and looking at the computer screen!] you have to
�reference these two cells .

This incident is remarkable for two reasons:
• The learner-tool interaction »jammed« the learner-teacher

interaction: Instead of establishing a real face-to-face situation, the
student and the pre-service teacher communicated with each other
via the representation on the monitor (see Fig. 5).

• The learner-tool interaction also hampered the learner-content
interaction: As the pre-service teacher found out later, the student
was caught by the representation on screen. After switching media,
the student solved the problem quite soon by herself after
»doodling« possible solutions on a sheet of paper!

Of course, a situation like this can occur at interactions between
learners as well. Furthermore, especially when better-informed

Fig. 5: Dominance of learner-tool interaction over learner-human
interaction: In the face of the computer monitor humans tend to establish an
»indirect human-computer-human« communication (continuous arrow)
instead of (direct) face-to-face interaction (dotted arrow) [17].

12 Peter Antonitsch

students are asked for help, they often »help« by solving the
particular problem by themselves (in Informatics classes commonly
by means of the used software-tool). It is almost needless to say,
that working together this way avoids efficient learning on the part
of the asking student. Obviously, considering the human factor in
class needs more than just providing an optimal learning
environment. Efficient learning in a learner-centred environment
needs basic (social) skills on the part of the learners.

Cooperative Learning [18] is a pedagogical framework providing
strategies how to acquire these basic skills, promoting (face-to-
face) interaction between group members and thus enabling groups
to accomplish shared goals. [19]: All students have to occupy with
a particular task, get feedback from their group mates (or/and the
teacher who is free to help with individual problems), and are
encouraged to reflect upon their own work [20]. On the other
hand, the teacher has to make preinstructional decisions, to
explain tasks and cooperative structure, to monitor and intervene,

�and to assess and evaluate the quantity and quality of student s
learning.

In Informatics didactics a lot of research on Cooperative Learning
seems to centre on how to create learner-centred web-based learning
environments, thus dealing with Computer- or Web-Based
Cooperative Learning5. But besides the necessary interaction of
learners and tools, face-to-face interactions are still important, even
in Informatics classes. There, (pure) Cooperative Learning provides a
well-tried framework for classroom organization, but there is little
evidence that Informatics didacts pay much attention to this topic
yet.

5 Searching the internet for Cooperative Learning in combination with Informatics
or Computer Science resulted in about 25 percent of the hits being about
Cooperative Learingn on a face-to face basis. Additionally, many of these resources
deal with learning at university level.

From Object-Orientation to Human-Centeredness 13

3 Final Remarks
Considering the human factor in Informatics classes is a multi-faceted
effort. In doing so, the teacher has to design the learning
environment regarding individual learning preferences of the students
and pedagogical patterns that allow for efficient cooperation inside
the learning group, including the teacher. Therefore, considering the
human factor in Informatics classes goes beyond the scope of
Informatics didactics mainstream: To care about technical artifacts

�alone simply does not serve the purpose knowing about cognitive
structures or planning and guiding interaction processes seem to be
important aspects as well. This article assembles personal experiences
and findings from different branches of science to point at ways how
to start with considering the human factor in Informatics. It is time

� �to substitute discussions like objects first or objects later by an
�attitude, that puts the learner in the first place not only in

pedagogy but also in Informatics didactics.

4 Epilogue
Self-reflection on part of the teacher completes the learning-
tetrahedron. Self-reflection on part of the teacher adds instructive
loops to bygone classroom situations or individual learning
experiences. Hence self-reflection on part of the teacher is an
important part of the human factor of the learning process. I have
tried to pay tribute to that by switching to first person style
whenever writing about personal experiences or conclusions from my
process of self reflection. Furthermore, this »semi-scientific« style
should emphasize that in every learning process there is always a
»me« that is learning.

References
1. Blömeke, S.: Universität und Lehrerausbildung. Klinkhardt, Bad

Heilbrunn (2002)

14 Peter Antonitsch

2. Antonitsch, P.: Standard Software as Microworld? In: Mittermeir R.
(ed.): From Computer Literacy to Informatics Fundamentals. Lecture
Notes in Computer Science Vol. 3422, Springer, Berlin-Heidelberg (2005)

3. Antonitsch, P.: Programmieren mit Open Office Basic? Überlegungen
zur didaktisch motivierten Adaption von Open Source-Software zur
Lernumgebung. In: I.-R. Peters: Informatische Bildung in Theorie und
Praxis. Beiträge zur 13. GI-Fachtagung »Informatik und Schule«, INFOS
2009, LOG IN Verlag, Berlin (2009)

4. Reich, K.: Systemisch-konstruktivistische Pädagogik. Beltz, Weinheim
und Basel (2005)

5. P. C. Rosnick, J. Clement: Learning without understanding. In: Journal
of Mathematical Behaviour, 3 (1) 3-27 (1980)

6. Davis R.B.: Learning Mathematics. The Coginitve Science Approach to
Mathematics Education. Ablex Publishing Corporation, Norwood New
Jersey (1984)

7. Joni S.-J., Soloway E., Goldman R., Ehrlich K.: Just So Stories: How the
Program Got that Bug. ACM SIGCUE Outlook Volume 17, Issue 4
(1983)

8. Bonar J., Soloway E.: Uncovering Principles of Novice Programming. In:
Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages (1983)

9. Schwank I.: Cognitive Structures and Cognitive Strategies in Algorithmic
Thinking. In: Lemut E., du Boulay B., Dettori G. (eds.): Cognitive
Models and Intelligent Environments for Learning Programming.
Springer, NATO ASI Series F, Vol. 111, pp 249-259, Berlin (1993)

10. Cohors-Fresenborg E., Striethorst A.: Untersuchung individueller
Unterschiede in der mentalen Repräsentation von symbolverarbeitenden
Regelsystemen. In: Zentralblatt für Didaktik der Mathematik, Vol. 35 No
3, pp94-101 (2003)

11. Schwank I: On Predicative versus Functional Cognitive Structures. In:
Schwank I. (ed.): European Research in Mathematics Education, Vol. II,
84-96, Forschungsinstitut für Mathematikdidaktik, Osnabrück (1999)

12. Schwank I.: Analysis of Eye-Movements during Functional versus
Predicative Problem Solving. In: Proc. of the 2nd Conference of the
European Society of Research in Mathematics Education-Working Group

�5 Mathematical Thinking and Learning as Cognitive Processes,
Mariánské Lázn (2001)ě

From Object-Orientation to Human-Centeredness 15

13. Cohors-Fresenborg E.: Registermaschine as a Mental Model for
Understanding Computer Programming. In: Lemut E., du Boulay B.,
Dettori G. (eds.): Cognitive Models and Intelligent Environments for
Learning Programming. Springer, NATO ASI Series F, Vol. 111, pp 235-
248, Berlin (1993)

14. Xu B.Y.: Untersuchung zu prädikativen und funktionalen kognitiven
Strukturen chinesischer Kinter bei der Auseinandersetzung mit
Grundbegriffen der Programmierung. Schriftenreihe des
Forschungsinstitus für Mathematikdidaktik Nr. 25, Osnabrück (1994)

15. Antonitsch P.: Databases as a Tool of General Education. In: Mittermeir
�R. (ed.): Informatics Education The Bridge between Using and

Understanding Computers. Lecture Notes in Computer Science Vol.
4226, Springer, Berlin-Heidelberg (2006)

16. �Antonitsch P.: Datenbanken (etwas) anders gesehen. In: Schubert S.
(ed.): Didaktik der Informatik in Theorie und Praxis. Proceedings of 12.
GI-Fachtagung Informatik und Schule, INFOS 2007, Köllen
Druck+Verlag GmbH, Bonn (2007)

17. Antonitsch P., Lassernig U., Söllei A.: Lehrarrangements in der
Informatiklehrerausbildung. In: Schubert S. (ed.): Didaktik der
Informatik in Theorie und Praxis. Proceedings of 12. GI-Fachtagung
Informatik und Schule, INFOS 2007, Köllen Druck+Verlag GmbH, Bonn
(2007)

18. Johnson R.T., Johnson D.W.: Cooperative Learning Homepage.
Available at: http://www.co-operation.org/, access on Aug. 19th 2009

19. Integrating New Technologies into the Methods of Education:
Cooperative Learning. Available at:
http://www.intime.uni.edu/coop_learning/index.htm, access on Aug.
18th 2009

20. Brüning L., Saum T.: Erfolgreich unterrichten durch Kooperatives
Lernen 1. NDS Verlagsgesellschaft, Essen (2008)

Beaver, Kangaroo and Classroom
Situations:

A Promising Symbiosis

Peter K. Antonitsch1, Andrea Grossmann2, and Peter Micheuz1

1 Alpen-Adria Universität Klagenfurt
Institut für Informatiksysteme

{Peter.Antonitsch, Peter.Micheuz}@uni-klu.ac.at
2 HTBL Mössingerstraße Klagenfurt
andrea.grossmann@htl-klu.at

Abstract. During the last few years »Informatics Beaver« has
gained recognition throughout Europe. Addressing secondary
school students of all standards, this Informatics problem
solving contest was designed on the model of the »Mathematics
Kangaroo«. This article points at similarities of and differences
between these competitions, considers the relationship between
the two contests and the corresponding subject-matters and
suggests ways to enrich classroom teaching by borrowing from
problem solving contests.

1 Problem Solving Competitions
Problem Solving Competitions in the field of formal and natural
sciences have a long tradition. The first International Mathematical
Olympiad was held in Romania in 1959, followed by the International
Physics Olympiad (Poland, 1967) and the International Chemistry
Olympiad (Czechoslovakia, 1968). The International Olympiad in
Informatics is a rather young high level contest and was conducted in
Bulgaria in 1989 for the first time.
Apart from these tournaments for the rather talented, there exist
problem solving contests which are intended for students of all

Beaver, Kangaroo and Classroom Situations . . . 17

standards, like the Math Kangaroo or the Informatics Beaver. As
�these contests influence the students notion of the corresponding

subject-matter, they are of particular didactic interest.

1.1 �Of Kangaroos and Beavers Some Historical Remarks
The roots of the Math Kangaroo can be traced back to the late
seventies of the 20th century. It was in 19781, when the Australian
Mathematics Competition was introduced in Australian schools on a
nationwide scale [3]. Originally consisting of 30 multiple choice tasks2,
this contest soon spread over Australia and the South Pacific region
and inspired two French Mathematics teachers to organize a similar
contest in France in 1991, named »Kangourou des Mathématiques«
to give honour to the Australian inventors [4]. Within three years the
Math Kangaroo became an international contest, attracting more
than 5 million participants in 2008. Quite similar to its Australian
forerunner, this contest aims at promoting creative thinking and
enjoyment in mathematical reasoning by means of multiple choice
based mathematical problems allowing for a quick solution. Some of
these problems rely on knowledge provided in Mathematics classes,
while others require a deeper understanding of the mathematical
background or general problem solving strategies.

The main principles of the Math Kangaroo were borrowed by V.
Dagiene � to establish a tournament to promote interest in
Information and Communication Technologies (ICT) as well as
Informatics as foundational science of this area to all school

�students ([5], [6]). The »Bebras International Contest on Informatics
and Computer Literacy« (short: »Informatics Beaver«) was
conducted in Lithuania in 2004 for the first time and has turned an
international contest since, with almost 100.000 participants from 10
(European) countries in 2008.

1 There exist even older contests, like the UNSW School of Mathematics and
Statistics Competition (starting in 1962) [1], or the Canadian Mathematics
Contest (dating back to 1963) [2].

2 The format of the contest was changed several times. By now there are 25 multiple
choice tasks and 5 single answer tasks, requiring integer answers between 0 and
299.

18 Peter Antonitsch, Andrea Grossmann and Peter Micheuz

1.2 Classifications of Beaver- and Kangaroo-Tasks
Informatics and Mathematics differ in their scientific approach to the
world. Modelling is a basic concept of both sciences, but it is
Informatics that includes the technological realization of models,
caring about aspects like the interface between man and machine or
economical issues. While Mathematics is a pure science where the
model per se is of value, Informatics is obliged to applicability and
realizability of the model as well [7]. This difference between the two
sciences affects school curricula of Mathematics and Informatics:
There are various cross-connections and interrelations, but the
learning goals are different.

The Mathematics Kangaroo and Informatics Beaver have much
in common: They share common roots, both of them focus on
problem solving and both contests contain tasks that originate in the
culture of the corresponding subject-matter at school. Consequently,
the set of Beaver-tasks and the set of Kangaroo-tasks should have a
non-empty intersection, but the differences of the two sets have to be
non-empty, too! A look at the classification of tasks proves this right:

In [8], V. Dagiene and G. Futschek present a list of six task
types relevant for tasks of the Informatics Beaver:
• information comprehension (including representation, coding and

encryption)
• algorithmic thinking (including programming aspects)
• using computer systems (general principles of standard software)
• structures, patterns and arrangements (combinatorics and discrete

structures)
• logical puzzles and games
• ICT and society (including social, ethical, cultural, international

and legal issues)

Beaver, Kangaroo and Classroom Situations . . . 19

On the other hand, there is no official list of task types for the
Mathematics Kangaroo. As a starting point we use a classification
provided in [9], [10] to cluster existing Kangaroo tasks:
• numbers and computations (including fractions, primes and

percentages)
• equations, inequations and functions (including linear and non-

linear equations, diophantic equations, systems of equations and
graphs of functions)

• combinatorics (with numbers and shapes)
• geometry (including plane geometry and solid geometry)
• logic, cryptic and magic puzzles.

The list misses a category algorithms, although algorithmic
thinking has influenced the development of mathematics throughout
history ([11], pp 185). A closer look unveils algorithms/algorithmic
thinking being orthogonal to the Kangaroo-categories: Algorithms are
the heart of computations and geometric constructions of any kind.
Therefore we consider splitting the first category valid, turning
numbers and computations into dealing with numbers and algorithms
(see Fig. 1).

1.3 Changing the Point of View: Specific, Interchangeable
and Related Tasks

Fig.1 suggests that some types of tasks are characteristic either
to the Beaver-domain or to the Kangaroo-domain of problem solving.
We call this kind of tasks (Beaver- or Kangaroo-) specific tasks.

But most of the categories belong to both domains (at least
partly). Furthermore, structures, patterns and arrangements to some
extent corresponds to combinatorics, while representation of
information and dealing with numbers share coding as a common
ground. And, of course, algorithmic thinking and algorithms seem to
be mere synonyms. Consequently there have to be tasks that could

20 Peter Antonitsch, Andrea Grossmann and Peter Micheuz

be items of Informatics Beaver and Math Kangaroo as well. We call
this kind of tasks interchangeable tasks.

But we have to be careful! Looking at tasks concerning
algorithms/algorithmic thinking we notice that seeming synonymy
can denote different aspects of a category as well: In 2007 one of the
(more difficult) Kangaroo-tasks for the grade 9 and 10 reads as
follows ([10], p 44):

Let a and b be the solutions of the quadratic equation
x2

� 3x + 1 = 0. What is the value of a3 + b3?
A) 12 B) 14 C) 16 D) 18 E) 24

To find the correct solution (without guessing), the contestant might
use the known algorithm for solving quadratic equations and

�calculate the sum of the third powers, or make use of Vieta s
formulas, the contestant is supposed to be acquainted with.

Fig. 1. Task-categories map of the Informatics Beaver- and Math Kangaroo-
�domains the categories overlap to indicate that some tasks can not be

related to one category alone. Puzzles are kept separate because they play a
minor role in classroom situations (at least in Europe).

Beaver, Kangaroo and Classroom Situations . . . 21

Fig. 2 depicts a Beaver-task of comparable degree of difficulty
for the same grades. Here, the solution of the problem does not
necessarily depend on prior knowledge about certain algorithms or
the Logo turtle, but can be found by re-inventing the sequence of
commands necessary to draw the given picture.

Fig. 2 Beaver-task of the category algorithmic thinking (2005, grades 9 and
10; [12]).

Obviously, both tasks concern algorithms, but at different levels
of action: Solving the Kangaroo-task means to use algorithms already
known, while solving the Beaver-task means to create (or to process)
a new algorithm. Furthermore, dealing with these problems entails to
take different views: When applying ready-made algorithms the
problem-solver remains outside the problem. On the other hand,
finding an algorithm to have something done by an actor means to
view the problem with the eyes of this actor, in other words: to step
into the problem [13].

Tasks that share a common topic but require different levels of
action and/or different approaches to be solved shall be called related
tasks. The same goes for tasks that take different points of view on a
common topic.
We provide some examples to clarify the definitions given above
(Fig. 3 and Fig. 4):

22 Peter Antonitsch, Andrea Grossmann and Peter Micheuz

Fig. 3. Three tasks concerning graph theory (category structures, patterns
and arrangements resp. combinatorics with shapes). The two Beaver tasks
represent related tasks � � � �, while Fastest Way and Cheapest Ticket are
interchangeable Beaver- and Kangaroo-tasks.

Beaver, Kangaroo and Classroom Situations . . . 23

Fig. 4. Specific tasks from the categories using computer systems and
geometry.

1.4 A Concluding Interlude
In spite of their common roots and goals, Mathematics Kangaroo and
Informatics Beaver have become well-distinguishable problem-solving
contests that complement each other. The common stock of
interchangeable tasks serves as a link between mathematical
reasoning and strategies to tackle problems in the field of
Informatics. Therefore, these two competitions cover a wide spectrum
of problems and, what counts even more, they manage to motivate
young people to engage in problem-solving activities. Judging from
personal experience, competitions manage to motivate much better
than typical classroom situations in Mathematics or Informatics.

We have to ask: What makes the difference? And: Can we
borrow from problem-solving contests for students of all standards in
order to enhance learning in class?

24 Peter Antonitsch, Andrea Grossmann and Peter Micheuz

2 Kangaroo, Beaver and the Corresponding
Subject-Matters

2.1 The Core of Subject-Matters: Fundamental Ideas and
Standards
The concept of fundamental ideas was introduced into didactics in

�1960 by Jerome S. Bruner who asked: What are the implications of
emphasizing the structure of a subject, be it mathematics or history
� emphasizing it in a way that seeks to give a student as quickly as

�possible a sense of the fundamental ideas of a discipline? ([14], p. 3).
Fundamental ideas of a discipline provide an abstract framework for
the corresponding subject matter and have become the basis for
educational standards that focus on the interface between the subject
and teaching/learning practice. When looking for connections
between Mathematics Kangaroo and Informatics Beaver on one hand
and the subject matters Mathematics and Informatics on the other,
� �the standards seem to be an appropriate starting point.

2.2 Kangaroo Categories and Mathematics Standards
In 2000 the National Council of Teachers of Mathematics (NCTM)
published »Principles and Standards for School Mathematics« which
has become the mother of all standards in the field of Mathematics3

and Informatics. The NCTM-collection lists five content standards
�and five process standards, each of which consists of two to four

�specific goals that apply across all the grades [15]. The content
standards are4 number and operations, algebra, geometry,
measurement, and data analysis and probability, accompanied by the
process standards problem solving, reasoning and proof,
communication, connections, and representation.

3 For instance, the Austrian content-standards for the subject matter Mathematics
are akin to the NCTM.standards, with the single exception that in Austria
»analysis« is a content standard for grades 9 to 12/13 while the NCTM-standards
miss this branch of Mathematics completely. (see [16], [17] for a synopsis of current
Austrian Math-standards).

4 see [15] for complete information.

Beaver, Kangaroo and Classroom Situations . . . 25

Comparing the content standards with the original list of Kangaroo-
categories taken form [9], [10] we see little difference: The category
equations, inequations, functions, and graphs can be subsumed under
the content standard algebra-and the category puzzles can be related
to the process standards reasoning and proof and problem solving5,

��where the NCTM-standard reads as follows: [] Students need to
develop a range of strategies for solving problems, such as using

�diagrams, looking for patterns, or trying special values or cases. []
Teachers play an important role in developing students' problem-
solving dispositions. They must choose problems that engage

� �students []. [15]. Puzzles are a good choice of problems to engage
students. Obviously, Kangaroo-tasks are quite compatible with
standards for the subject matter Mathematics.

2.3 Beaver Categories and Informatics Standards
After the model of the NCTM-standards for Mathematics a working
group of German-speaking Informatics didacts elaborated a
recommendation for Informatics standards for grades 5 to 10 [18].

� �Published in 2008, this recommendation like its forerunner lists
five content standards and five process standards. There are
information and data, algorithms, language and automat, Informatics
systems, and Informatics, man, and society for the content
standards6, and modelling and implementing, explaining and
appraising, structuring and linking, communication and cooperation,
and representation and interpretation for the process standards.

Quite similar to the Kangaroo-categories, we find most of the
Beaver-categories match the Informatics content standards:
Information comprehension and algorithmic thinking correspond to
information and data and algorithms, touching even aspects of the
process standard modelling and implementing. Furthermore, using
computer systems and ICT and society represent subsets of
Informatics systems and Informatics, man, and society, while

5 In Austria »problem solving« is a process standard for grade 4 only!
6 see [18] for complete information

26 Peter Antonitsch, Andrea Grossmann and Peter Micheuz

structures, patterns and arrangements intentionally touches aspects of
language and automata.

And, again, we miss a notion of logic puzzles and games within
the list of standards7,

2.4 What makes the difference?
We have learned that there is hardly any difference between task-
categories of problem solving contests and educational standards of
corresponding subject matters. In other words: It is very unlikely
that the motivation of problem-solving contestants is (solely)
triggered by the content of the tasks. But the absence of puzzles and
games might give a clue.

Puzzles are considered unstructured problems that have to be
framed by the solver before solving [19]. Furthermore, games are
considered organized play structured by the six key elements ([20],
p118) rules, goals and objectives, outcomes and feedback,
conflict/competition/challenge/opposition, interaction, and story or
representation.
Informatics Beaver and Math Kangaroo incorporate most of these

�characteristics: The contestants goal is to reach as many points as
possible and they get feedback about their performance by means of
result lists. Many tasks are put into context, some of them are
challenging, and some of the tasks are even unstructured at first

��sight. But are the contests play in the sense of [] play is a free
� �activity that is consciously outside of ordinary life . [] play is

� � �utterly and absorbing ([20], p 112)? We think the answer is yes :
�Students are free to enter the contest those who refuse to

participate are free to skip all the tasks without negative
consequences8. Moreover, Kangaroo and Beaver tasks have the
quality � �of haunting thoughts : The tasks stem from the mindset of

7 The situation is even worse than with Kangaroo-categories and NCTM-standards:
The Informatics process standards do not include items like problem solving and
reasoning explicitly (although reasoning might be part of communication and
cooperation)!

8 See [6] for an outline of Beaver contest regulations; the rules for Math Kangaroo
are alike.

Beaver, Kangaroo and Classroom Situations . . . 27

Informatics/Mathematics alone and each of the tasks covers just a
narrow domain inside Informatics/Mathematics. Therefore, most of
the problems are easy to survey and quite often the combination of
textual and graphical representation contains a first notion of the
solution. To have an idea where to begin is a necessary prerequisite

�and a strong motive to take up one begins, one tries this and that,
� � � �gets involved (almost absorbed) and feels a touch of flow when

the solution is puzzled out at last. Furthermore, the multiple-choice
style of the contests helps to check whether ones own solution might
be correct9.

Consequently, when students participate in the Informatics
Beaver or Math Kangaroo they actively play a kind of game. This
really makes a difference to common classroom situations. M.

�Prensky states that the majority of our education has become a
series of informational or logical presentations or readings, followed

�by some sort of quiz or examination. [] it bores the [learners] to
�tears [20, p71]. Learners who are used to be active at multi-medial

private entertainment become mere listeners at school, supposedly
most of them, most of the time. But with problem-solving contests
the problem-solvers have to be active! They have to think, they have
to try by themselves, they can tinker at the problems and they even
can err without consequences for their career at school!

That makes another good point: The Informatics Beaver and
Math Kangaroo are no part of daily routine at school. These contests
are something special outside ordinary life �, so from the students

�viewpoint the contests are really sort of (organized) play. People
enjoy difficult tasks more when presented as play rather than work,

�and their minds wander less. [20, p 115]
Yet there is another, a social aspect that must not be neglected:

Although the »Informatics Beaver Games« and the »Math Kangaroo
Games« are outside school, being a good »player« pays off in school:

9 Of course we are aware that the provided possibilites for correct answers are used
the other way around as well (and, supposedly, even more often): Contestants
might simply choose the answer that is correct most likely, sometimes without any
reasoning.

28 Peter Antonitsch, Andrea Grossmann and Peter Micheuz

It is quite common that the best »beavers« or »kangaroos« (of a
school, a district, a country) get prizes and are honoured within a
ceremonial act. The motivating power of gaining recognition inside

�one s social group should not to be underestimated!

3 Outlook and Résumé
Informatics Beaver and Math Kangaroo are similar, but not the
same. Further research might focus on distributing a greater sample
of tasks to the categories of interchangeable, related and specific
tasks, possibly arriving at the conclusion that a refined categorization
will be more appropriate.

Investigating the influences of Informatics Beaver and/or Math
Kangaroo on »ordinary« Informatics/Mathematics lessons outlines
another promising field of research. Two aspects might be of specific
interest:
• It has been noticed that problem-solving competitions can rouse

�the learner s interest in the corresponding subject matter.
�Questions like: Can we discuss the solution to that particular

� �problem? or: These problems were so different from what we
deal with in our Informatics/Mathematics lessons! Does this really

�belong to Informatics/Mathematics? point at the potentiality of
�the contests to widen the learner s horizon and to continue

engaging the learners in solving problems within or even beyond
the scope of a particular curriculum.

• We witness that inspired teachers already use Kangaroo-like
problems successfully to motivate their students in Mathematics
lessons, especially in grades 5 to 8, but until now these individual
advances seem to be beyond the scope of scientific research.

There are further questions concerning the adaptability of
contest-style tasks for daily learning, like:
• What about the process-level of Beaver- and Kangaroo-tasks? Are

there specific Beaver-skills and/or Kangaroo-skills, and if there
are, do they correspond to the process standards listed above?

Beaver, Kangaroo and Classroom Situations . . . 29

• Can Beaver- and Kangaroo-tasks be expanded so that problem-
solvers not only have to choose the correct solution but also have
to explain how they found it? Or will the inevitable shift from
multiple choice tasks to short answer questions diminish the
motivating effect for the majority of students?

• Can we exploit the knowledge about the power of games and the
importance of social ties as well to enhance learning in class? In

�[21] T. Verhoeff states his personal opinion, that competitions
�have much to offer in education . We quite agree with him, but

does this apply to (imaginable) micro scale contests as well? Do
�intra-school (or even intra-class) contests change the student s

general attitude towards learning? Might these contests help to set
up a competitive or rather a cooperative climate in school/class?
And finally: What does it take to establish a common spirit of
esteem for (academic) success in schools?

All of these questions point at an inspiring, a vital, and a very
promising symbiosis between school and problem-solving contests
designed for all students. Most answers have still to be given, though.

References
1. http://www.maths.unsw.edu.au/highschool/unsw/highcomps.html
2. http://cemc.math.uwaterloo.ca/contests/contests.html
3. http://www.amt.edu.au/amcfact.html
4. http://www.mathkang.org
5. http://www.bebras.org
6. Dagiene V.: Competition in information technology - learning in an

�attractive way. Submission to the workshop Perspectives on Computer
�Science Competitions for (High School) Students at Schloss Dagstuhl,

Germany, 2006.
http://www.bwinf.de/competition-workshop/papers.html

7. Mittermeir R.: Mathematik und Informatik. Halbbrüder oder Geschwister
unterschiedlichen Geschlechts. In: Kadunz G. et al. (eds.): Mathematische
Bildung und neue Technologien. Teubner, Stuttgart (1998)

8. Dagiene V., Futschek G.: Bebras International Contest on Informatics and
Computer Literacy: Criteria for Good Tasks. In: Mittermeir R., Sys�o

�(eds.): Informatics Education Supporting Computational Thinking.

30 Peter Antonitsch, Andrea Grossmann and Peter Micheuz

Lecture Notes in Computer Science Vol. 5090, Springer, Berlin-Heidelberg
(2008)

9. Noak M., Geretschläger R., Stocker H. (eds.): Mathe mit dem Känguru.
Die schönsten Aufgaben von 1995 bis 2005. Carl Hanser Verlag, München
(2008)

10. Noak M., Geretschläger R., Stocker H. (eds.): Mathe mit dem Känguru.
Die schönsten Aufgaben von 2006 bis 2008. Carl Hanser Verlag,
München (2009)

11. Davis P.J., Hersh R.: The Mathematical Experience. Birkhäuser Verlag,
Basel (1982)

12. CD.version of the 2004- and 2005-Beaver tasks, downloadable at:
http://www.emokykla.lt/bebras/download/bebras.zip

13. � �� � ��Duchâteau C.: From DOING IT to HAVING IT DONE BY : the
heart of programming. Some didactical thoughts. In: Preproceedings
NATO ARW Cognitive Models and Intelligent Environments for
Learning Programming. S. Margherita Ligure, Genova 1992

14. Bruner J.S.: The Process of Education. Harvard University Press,
Cambridge Mass. (1960)

15. NCTM Standards Online; available at:
http://standards.nctm.org/document/

16. Bildungsstandards und Kompetenzmodelle für die 4. und 8. �Schulstufe
Austrian educational standards and competency models for grades 4 and
8 (in German):
http://www.bmukk.gv.at/medienpool/17534/bgbl_ii_nr_1_2009_anlag
e.pdf.

17. �Bildungsstandards Angewandte Mathematik BHS Austrian educational
standards for applied Mathematics in vocational schools (in German);
available at:
http://www.berufsbildendeschulen.at/fileadmin/content/bbs/AGBroschu
eren/ PilotbroschuereMathe-jan09.pdf.

18. Arbeitskreis »Bildungsstandards«: Bildungsstandards Informatik für die
�Sekundarstufe 1 Educational standards Informatics for grades 5 to 10

(in German). Beilage zu LOG IN, 28. Jg. (2008), Heft Nr. 150/151.
19. Michalewicz Z.., Michalewicz M.: Puzzle-Based Learning. In: Proceedings

of the 2007 AaeE Conference, Melbourne, published as a CD-ROM
available online at
http://www.cs.mu.oz.au/aaee2007/papers/paper_25.pdf

Beaver, Kangaroo and Classroom Situations . . . 31

20. Prensky M.: Digital Game-Based Learning. Paragon House, St. Paul MN
(2007)

21. Verhoeff T.: The Role of Competitions in Education. Presented at
Future World: Educating for the 21st Century, a conference and
exhibition at IOI, available at:
http://olympiads.win.tue.nl/ioi/ioi97/ffutwrld/competit.pdf

All links have been accessed on Aug. 24th 2009

Maturity Exam in Programming for a
High School: Tasks Developing and

Evaluation Approaches

Jonas Blonskis1 and Valentina Dagiene2,

1Kaunas University of Technology
�Sukileliu str. 112 34, Kaunas, LT-49240 Lithuania

jonas.blonskis@ktu.lt
2Vilnius University, Faculty of Mathematics and Informatics

Naugarduko str. 24, Vilnius, LT-03225, Lithuania

dagiene@ktl.mii.lt

Abstract. Two models of maturity exams in information
technologies and computer science have been applied in
Lithuania at high schools [2]. The first one is intended to

�evaluate students competencies in information technologies.
The other one is focused on programming skills and is intended
for promoting the professional studies of informatics in higher
education. The first national exam in information technology
was launched in 2006. The exam consists of a set of tests
(questions) and two programming tasks to write programs
named as practical tasks. The goal of the practical tasks is to
develop programs for given tasks. Developing programs is the
most important part as well as one of the most difficult tasks
for students. The paper deals with objectives, tasks, and
evaluation of the maturity exam in programming for high school
students.

Keywords: Exam in informatics, programming, task
developing, writing programs, data structures.

Maturity Exam in Programming for a High School . . . 33

1 Introduction
Informatics (information technologies) as a separate subject was
taught in Lithuanian high (secondary) schools. To establish the
maturity exam in informatics was quite a purposeful process.
Discussion on the maturity exam in informatics has been presented in
the second ISSEP conference and later [2; 3; 4].

Students can choose a module of programming basics in the 11-
12th form. The objective of this module is to familiarize students
with programming constructions, encourage them to choose
informatics studies in universities and become programmers. In this
module, students are familiarized with solution methods of simple
tasks, data structures and algorithm modification [5].

Programming skills hold quite a big part of informatics studies.
Informatics study programs are being improved and expanded.
Students who are familiarized with programming concepts and who
want to program are required. National and international informatics
olympiads are intended basically for creating algorithms and
developing algorithmic thinking, moreover, they encompass only a
small part of the most talented students. Researches show that the
most talented programmers have written their programs at the age of
11-13. Therefore, the need to evaluate the acquired knowledge and
skills with one accord appeared in Lithuania. Since 2006 the national
exams in information technology and programming (in abbreviation,
programming) have been carried out and their results are a part of
competition grade when informatics or contiguous studies in higher
education are chosen. Those who pass the national exam in
programming successfully, have wider possibilities to become students
of the desired trend of studies, i.e. informatics. At the same time it is
a test whether a student is apt for studying informatics: there are
quite many first-year students who quit their studies since they find
programming a hardly understandable and uninviting occupation for
themselves.

The exam may be approached in two ways: on the one hand, it is
the evaluation of the results achieved by a student; on the other

34 Jonas Blonskis and Valentina Dagienė

hand, it could heighten the motivation to learn. Both must be
considered when planning the exam. The exam should be prepared so
that it measured the competences needed for studying in universities.

2 Objectives and Scopes of the Exam
Developing a national recognized exam is a responsible job. The
exam not only evaluates students' knowledge and makes way for the
students aligned to enter universities, but also teaches younger
students and teachers [2].

An exam is usually the final method used to evaluate the learning
levels reached by students as well as the quantitative expression of
achievements according to the educational standards. The main
function of an exam is the evaluation of learning results [8]. The

�content of the exam is closely related to the subject s curriculum.
�The proper selection of the exam s goals, and the emphasis (or lack

thereof) on one or another aspect of the subject, have a strong
impact on the quality and content of learning as well as on the

�students motivation to learn the discipline. Lithuanian teachers and
students pay great attention to exams and therefore this situation
should be exploited. By creating the content of the exam, a double

�goal could be achieved: to evaluate the students knowledge and to
encourage a student to cultivate his or her skills in the chosen field.

The goal of the programming exam is to encourage skilful
students to engage in software design and thus to develop their skills.
Programming is one of the most essential intellectual resources of our
country. However, programming is not an easy job: it requires much
effort and certain specific skills. Programming is a creative process
that encourages thinking and the integration of knowledge from
various fields. It helps form a professional attitude to application
programs and prompts an impact on their implementation in a more
efficient way. It is assumed that the programming exam will help
some students to become interested in this activity and they will
pursue programming as a profession.

Maturity Exam in Programming for a High School . . . 35

When developing the content, the recommendations of world
experts were taken into consideration [8]. The maturity programming
exam is based on the optional module of the basics of programming

�[5; 6] which consists of four parts: 1) introduction basic elements of
programming; 2) data structures; 3) developing algorithms; 4) testing
and debugging programs.

The exam consists of two parts: the larger part (75%) is allocated
to programming, while the rest part (25%) concerns the issues of
computer literacy. The programming part consists of a test (25%)
and two practical tasks (50%). The aim of the programming test is to

�examine the level of students knowledge and understanding of the
tools required in programming (elements of the programming
language, data types and structures, control structures, basic
algorithms). The national exam focuses on: knowledge and

� � �understanding 30%, skills 30%, and problem solving 40%. The
problems are oriented towards the selection of data structures and
application of basic algorithms to work with the created data
structures.

�The practical part has two tasks, students have to write
programs for the given problems. The main aim is to examine the

�students ability to master the stages of programming activities
independently.

�The first tasks are intended to examine the students abilities to
write programs of the difficulty described in educational standards.
The abilities of students to use the array data type for work with
integers, to realize the algorithms for work with data structures as
well as the abilities to manage with input and output in text files are
examined.

�The second tasks are intended to examine the students
understanding and abilities of implementation of the record data
type. The core of the task is to develop the appropriate structures of
records together with arrays. The abilities to input data from the
text file to arrays containing the elements of record type, to perform
operations by implementing the analyzed algorithms, and to present
the results in a text file are being examined. The operations are to be

36 Jonas Blonskis and Valentina Dagienė

performed only with numerical values. The curriculum does not mean
operations with character strings, only reading and derivation of such
strings are applied.

Further, we will deal with the practical tasks of the exam: their
�aims, complexity, evaluation, students solutions developed,

approaches and indentified problems. The national exam curriculum
and tasks are presented in National Examination Centre of the
Republic of Lithuania (URL: http://www.nec.lt) [5].

With the participation of UK experts, the exam analysis, was
made under the project [8], while its results and conclusions on how
to prepare the exam were checked by means of a pilot exam in
December 2007. A great attention was paid to the development of
practical tasks. They must meet three main requirements: to test
knowledge, practical skills, and the ability to solve problems. The
first two points are not difficult to evaluate and possible to formalize,
while the evaluation of the third one, the creative aspect, is
problematic.

The task meets the exam requirements if there is an opportunity
to choose from the following ways of solving it: 1) a method of
solution; 2) data structures; 3) realization of an algorithm. The
student's purpose is to find a suitable compatibility of the whole
(Fig. 1).

If there are more than one mathematical solutions of the task,
there may be more than one algorithm solution to each of them. The
student has to evaluate possible variants on his level of knowledge in
respect of data structures known to him. Only properly combined

Task Input Data Results
 while conditions are not satisfied

Solution method
Algorithm
Data Structure

Programming

Fig 1. Algorithm of the main component parts of task analysis

Maturity Exam in Programming for a High School . . . 37

those three aspects indicate the complexity and size of the future
program, which is very important since the exam time is limited. The
fact that realization of an algorithm depends on the chosen data
structures should be considered additionally.

The task consists of the main task formulation, initial data, and
requirements to results. Data structures are created in order to keep
data and results conveniently. At the same time, it is possible that
data structures are created separately for data and results. It is
essential to evaluate the necessity to save intermediate results during
the proceedings of task solution (e.g., it is enough to save only the
meanings of the last two sequence members while searching for the
nth Fibonacci sequence member). Moreover, while creating data
structures, it is necessary to consider a convenient way to perform
actions in them.

�3 To Solve a Task Write a Program
Students often understand the syntax of statements of a
programming language (e.g., repetition, procedure), but they do not

�know when and how to use them. Using Bloom s Taxonomy [9] to
analyze this problem, our students have difficulty moving from
knowledge recall (level 1) and knowledge comprehension (level 2) to
knowledge application (level 3). That is, students understand the
syntax of basic statements, however they cannot reach the level of
applying the knowledge and writing programs to solve problems.

We understand that an exam is not the best way of teaching
�students, it seems to be late. We have noticed something different.

The students who intend to take the programming exam choose the
programming module a year ago and try to follow the exam model
while studying. In other words, if a lot of attention is paid to writing
programs, if there are many tasks of algorithms and data structure
selection in the exam, the students pay much attention to the
mentioned points while learning. Therefore, the exam performs an
educational function.

38 Jonas Blonskis and Valentina Dagienė

For this reason, after every exam a quantitative analysis, which
emphasizes weakly acquired knowledge, the most complicated fields
of knowledge and the exam task suitability for ranking students, is
made. In addition, a qualitative analysis, which looks at solution
methods, data structures chosen by students and their ability to
develop algorithms, is made as well. Both of them show strong and
weak points and provide most rational solutions. Typical mistakes
are analyzed and the means to avoid them are indicated. Therefore,
this is the main educational means for those who prepare for the
exam and it is a source for teachers to raise their qualification.

Teachers act as program evaluators. The evaluation is performed
in two aspects: an automatic test to determine the correctness of
program work and a visual testing which aims to evaluate the
effectiveness of the written program. To this end, an interactive
evaluation system that is related to a data base of collecting and
processing the evaluation results has been created.

During the process of evaluation, different program variants are
analyzed and discussed, the effectiveness of chosen data structures
and algorithms is evaluated. That is the main source for preparing
the methodological educational material which is used in seminars
and teachings of various levels.

4 Peculiarities of Practical Tasks
�Solution of tasks displays students abilities to make decisions and

implement them. It consists of four steps: 1) selection of the solution
method, 2) algorithm formation, 3) data structures development, 4)
algorithm modification for proper work.

Selection of the solution method is important when there exist
several possible task solutions exist and most acceptable should be
chosen. The process of algorithmization is one of the most important
ones because it determines not only the size of a program, but also
the complexity, while task analysis, separation of initial data and
results govern the complexity of data structures.

Maturity Exam in Programming for a High School . . . 39

During the process of developing data structures, it is essential
to consider a convenient way to do both: to save initial data and
calculation results and to perform actions in order to realize the
created algorithm. At all the stages of program creation, a student's
ability to be independent and to refuse pattern solutions is the main
factor. In this way, the student's ability to look for indirect ways of
algorithmization is disclosed.

�Giving a task, it is most important to evaluate the student s
ability to create appropriate data structures considering the selected
solution algorithm, and to modify the algorithm to work with data in
those structures. An opportunity to select one of several alternative
solution methods, even though ambiguous, must be allowed in the
task. However, it is much more difficult to determine the rating scale.

�When evaluating the students programs, two aspects are
distinguished: program correctness and program rationality. The fist
one is assessed precisely according to a point rating scale prepared
beforehand. The evaluation consists of two steps: testing and
program text review. Whereas the second evaluation is rather
subjective, because there are no means to specifically describe the
most rational solution from all the possible ones. This is why the
work is evaluated by two independent assessors. If a great difference
between the evaluations occurs (e.g., the difference of 5%), the head
assessor evaluates the work.

Example: Collection. A full collection of chocolate egg toys
consists of 100 toys. Each toy has its number in the collection. Lina and
Jurgis have been collecting the toys for the whole summer. At the beginning
of September, they decided to exchange toys so that both collections were
supplemented with the new toys. Only those toys may be offered for

�exchange that appear in children s collection more than once. However, the
toys that are owned by the friend do not suit for exchange. Several identical
toys also cannot be offered to exchange [7]. Write a program that would
select the numbers of toys, chosen by Lina, to exchange with Jurgis, and the
numbers of toys, chosen by Jurgis, to exchange with Lina, would comprise a
list of toy numbers in a combined collection. The numbers cannot be
repeated.

40 Jonas Blonskis and Valentina Dagienė

Date �. The text file has three lines. The first line has n amount of Lina s
�toys, and m amount of Jurgis toys. In the second line, there are toy numbers

�of Lina's collection, while in the third line, there are toy numbers of Jurgis
collection (Table 1).

Results. Print the toy numbers offered for exchange in increasing order
in the text file. Print the toy numbers, offered by Lina for exchange, in the
first line, and the toy numbers, offered by Jurgis, in the second line. If they
both have no toys for exchange, then print 0 (zero) in the appropriate line.
In the third line, print �a list of toy numbers in Lina and Jurgis combined
collection in increasing order. The numbers cannot be repeated (Table 1).

Table 1. Example of data and results

Input file Output file
8 12

5 6 6 9 14 6 8 16

5 12 6 7 13 7 9 10 12 5 16

0

7 12

5 6 7 8 9 10 12 13 14 16

Most of the students chose a consistent task solution method.
They wrote down the initial data (toy numbers) into two separate
arrays and ranked in increasing toy number order. Then they formed

�two arrays where they wrote down each person s toy numbers for
exchange. Here these numbers which repeated in the data array at
least twice were written down. Afterwards, these numbers which were
present in the data list of another person were eliminated from the
data array, and this is data lists for exchange. Then the students
formed a list of the combined collection in the following way: they
wrote down the meanings of both initial arrays into a new array,
ranked the meanings of the array and eliminated the repeated toy
numbers. That is a simple sequence of actions which required even
five arrays. At the same time, three algorithms had to be used, such
as: ranking, searching for repeated meanings, and eliminating the
meanings from the array.

A more rational solution can be presented by saving data in two
� �arrays A (Lina s) and B (Jurgis): the array element index marked

the toy number, while the meaning of indexed variable marked the
amount of a particular toy number (to read data from such a file the

Maturity Exam in Programming for a High School . . . 41

�following action was used: A[no] := A[no] + 1, when no toy
� � �number, A Lina s collection list; analogous B array for Jurgis

collection). An example of writing data into arrays is shown in
Table 2.

Table 2. An example of writing data into arrays

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 0 0 0 0 1 3 0 1 1 0 0 0 0 1 0 1 0 0

B 0 0 0 0 2 1 2 0 1 1 0 2 1 0 0 1 0 0

For example, if A[k] = 0, it means that Lina does not have the
toy number k. Algorithm ranking and meaning elimination became
unnecessary. The toys with the meaning higher than 1, are for

�exchange. The toy number suitable for Lina s exchange is the one
�which is A[no] > 1 ir B[no] = 0. The list of Jurgis exchange is

formed in a parallel way. The list of combined collection is made up
in the same way as that of personal collections. Then, the numbers
which match the meaning unequal to zero in the array, have to be
printed. This method is simpler and the program is much shorter.
Similar solutions are also possible.

Fig 2. Task evaluation results
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

42 Jonas Blonskis and Valentina Dagienė

This task distinguishes more skilful students from the beginners
and does not constrict the creativity and independence in selecting a
solution. However, evaluation of such programs is a difficult process
since very diverse solution methods are used and the size of programs
differs. The evaluation results are presented in Fig. 2.

�The task was solved by 118 students; its difficulty 27% and
�resolution 69%. The numerical value of task difficulty is a

percentage of all the points get by students and the amount of points
theoretically possible to collect. According to the statistical test
theory, the best tasks are of 50% difficulty, very easy ones > 80%,
and very difficult ones < 20 %.

The task resolution shows how a separate task distinguishes the
best and the worst students. Task resolution is a difference between
difficulties of 10% of the best students who passed the exam and 10%
of the worst students. If the task is very easy and almost all the
students, the best and the worst ones, completed it successfully, the
resolution of such a task is small. A very difficult task may also have
a similar resolution. As it follows, a negative meaning of the
resolution shows that worse students gained more points for that
question than the better ones, and this is a feature of a very poor
question. According to the statistical test theory, proper tasks are the
ones with resolution of 40-50% and very good tasks have resolution of
>= 60%.

The results of the first practical tasks analysis given in the
previous exams are illustrated in Table 3.

Table 3. � The difficulty and resolution of the first practical task. Students
abilities to modify algorithms according to the particular data structures.

Year Students Difficulty,% Resolution,%
2006 1164 48,32 91,34
2007 873 49,24 68,65

Pilot 2007 119 27 69
2008 832 42.3 67.2
2009 812 45.3 96

Maturity Exam in Programming for a High School . . . 43

5 Evaluation
Programming is a creative process and therefore it is impossible to
formalize the requirements in a very precise and detailed way. The
programs submitted for evaluation are very different. For example,
the first task of the pilot exam does not include requirements to keep
data in the array; in the given programs, the arrays were used for
keeping not only the data, but also the results; several programs even
employed record arrays. Obviously, that is unreasonable

In 2004, preparation for the national exam was started. At this
time there was a concept of programming tasks and a test part. The
national examination centre collected data about possible
participants in the exam. The prognosis was for 1500 students. At
that time there was no experience in evaluating such a larger number
of programs. A similar experience was only in International
Olympiads in Informatics, but even there, there was a smaller
number of participants. In Lithuania the National Olympiad in
Informatics with about 400 participants is held too. However, the
style of evaluation is different in the contest and in the exam. In
contests only the best programmers take part and even in this case,
there is sometimes a very low score.

The main difference in the concept of Olympiad and that of
� �exam is an idea of fixing small errors in the program. The problem

� �with this fixing concept is that it is difficult to determine whether
it is a small error or large, and how many patches we can provide,
etc. On the other hand, it is clear that after patching we must retest
the program with all data sets, which is unusual for Olympiad, and
afterwards think of how many points a student has lost due to this
error.

Obviously, the Contest System from Olympiads can be useful,
but it cannot be used without significant changes. The national
examination centre has made a decision to create a totally new
automatic evaluation system with all the requirements met. In the
autumn of 2004, the work on system design was started and in
February 2005, the system framework was already functional.

44 Jonas Blonskis and Valentina Dagienė

�Then another phase started development of different modules
responsible for the evaluation on different aspects like evaluation of
the programming style. The development still continues, as the main
rules of the exam change step-by-step and new ideas arise for better
evaluation (Table 4). One of the latest ideas is to integrate a multiple
choice and open question answer testing in the same system, by
adding C++ language as a possibility for the programming part.

Table 4. Evaluation of the program development

Parts or program evaluation % of
Points

Testing. Automatic evaluation. 80
Data structures, data reading, actions of calculation, printing
of the results. Evaluated only if the results of at least one test
are incorrect.

80

Obligatory requirements to the program (procedures and
functions for single actions are indicated), programming
technology, and style.

20

Application of the evaluation operates with packages of
solutions. Each solution must be processed as follows: it must be
compiled, and then it must be run with several data sets. The
answers provided for all these data sets must be compared with the
correct. ones

In some tasks several different outputs can possibly be evaluated
as correct. For example, the task is to find the way how to give some
amount of money, if you have some set of coins. In this task, it can
possibly be found, as usual, several solutions. In this case, the
evaluation program must check the sum of selected coins. It is clear
that the checking result of the solution program can be rather
different from the comparison of two files. This yields an idea to
write a separate result correctness checker for each task. As a result,
application of evaluation is not one but several programs. The
correctness checker comes with a package of testing data and correct

Maturity Exam in Programming for a High School . . . 45

answers. It is also possible to have some specific libraries in the
package.

As students are not professional programmers, it is usual to get
different simple errors in output format. An example of such a style
error can be forgotten spaces between the numbers, all output in one
line, etc. The decision was made to split the correctness checker into
several programs: result format checker (which is rather a typical
scanner as used in translators) and result evaluator. Both of them are
prepared before examination by the task authors or engineers. To
ease the creation of the format checker specific library is written.

The evaluator team is trying to evaluate the solutions positively.
It means that students get points for their effort. For example,
correct input / output routines can be assessed by several points.
Also, some points can be gained for dividing the program to
subroutines, for using complex data structures like the array or
record, for writing nice comments, for a good programming style, etc.
These criteria can be easily evaluated by a person, while computer
evaluation is not so obvious. This is the reason for manual evaluation
of solutions.

The practice has showed that evaluators need some interactive
evaluating application, as some solutions have only some small
syntax problems, like semicolon missing. The evaluators have a
possibility to fix an error and to retest the solution. If the test after
fixing goes smoothly, only some points are removed from all the
points.

However, this manual work is time-consuming and another
problem is that some points of programming style are subjective. One
way for more precise results is the evaluation of the solution by two
different evaluators and comparison of their points. The third
evaluator is needed if a difference in the evaluation is observed.
However, this is a time-consuming process. After some discussions an
idea has arisen that a better similarity of evaluation the
programming style can be reached after some training courses. This
prompted an idea to create some programming style which can
generate the reference points for evaluators.

46 Jonas Blonskis and Valentina Dagienė

In the Lithuanian national examination we have a fixed
programming language Free Pascal, which has several styles of
programming, but they are not very different. However, a good
programming style is still debated in programming languages. As

�stated in [3], research on measurable programming style definitions
� �was very active in the 1980 s . The main problems in this area are

standards for a good programming style and choice of measure. P. W.
Oman and C. R Cook [9] have proposed taxonomy for the
programming style. There is rather a long list of different rules and
requirements to the code. However, it is not clear, which
requirements are compulsory and which are only suggestions.

6 Conclusions
The maturity exam in information technologies and programming has
been prepared according to the advanced module of programming.
Obviously, while preparing the exam, the most important part is

�developing of the appropriate tasks that would examine the students
abilities and express the module content.

Students must have freedom for creativity, even though that is
unhandy for the weak ones, since they create so complex and long
programs that they lack time to finish them. That is why it is
reasonable to limit the freedom of actions by, for example, forbidding

�using two-dimensional arrays, record data types, etc . A requirement
to create at least one procedure could be made.

In additional, when selecting a solution method to a practical
task, students do not consider which of the possible variants will be
the simplest one. Weaker students write a program for given data in
the task using the number of simple variables such that is needed to
save that data (very often by printing using the keyboard or
assignment statements to give initial meanings). They do this
without realizing that there is a lot of data and the example in the
task is only one of them.

Maturity Exam in Programming for a High School . . . 47

It has been noticed that the complexity and size of the programs
are mainly determined by the complexity of selected data types.
However, students rarely consider this when choosing them.

On the whole, it is relevant to select practical tasks so that the
results did not depend on the chosen solution method.

References
1. Anderson, J., Weert, T.: Information and Communication Technology in

Education. A Curriculum for Schools and Programme of Teacher
Development. Division of Higher Education, UNESCO (2002)

2. Blonskis, J., Dagien , V.: Evolution of informatics maturity exams andė
challenge for learning programming. In: R. T. Mittermeir (ed.).

�Informatics Education The Bridge between Using and Understanding
Computers. LNCS, vol. 4226, pp. 220--229. (2006)

3. Blonskis, J.; Dagien , V.. Analysis of students' developed programs at theė
maturity exams in information technologies. In: R.T.Mittermeir, M.M.

�Syslo (eds.). Informatics Education Supporting Computational
Thinking. LNCS, vol. 5090, Springer, pp. 204--215 (2008)

4. Dagien , V. Alternation of concepts of Informatics matura exam.ė
Informacijos mokslai, Vilnius, Vol. 16, pp. 39--47 [in Lithuanian] (2001)

5. General Curriculum for General Education School in Lithuania and
General Education Standards for Grades XI-XII. Ministry of Education
and Science of the Republic of Lithuania, Vilnius. (2002)

6. Curriculum for informatics maturity exams. National examination centre
of the Republic of Lithuania, URL: http://www.nec.lt [in Lithuanian]
(2007)

7. Tasks of national maturity exams. National examination centre of the
Republic of Lithuania, URL: http://www.nec.lt [in Lithuanian] (2007)

8. �Project Development of maturity exams �quality system . 2006-2008
SFMIS Nr. BPD2004-ESF-2.4.0-03-05/0107, http://www.egzaminai.lt/49/

9. Major Categories in the Taxonomy of Educational Objectives (Bloom
1956), URL: http://www.krummefamily.org/guides/bloom.html

Game Maker Workshop

�Nata a Grgurina1, Lars Tijsma2

1University Center for Learning and Teaching, University of Groningen,
Landleven 1, 9747 AD Groningen, the Netherlands

n.grgurina@rug.nl
2Information and Communication Academy, HAN University of Applied

Sciences, Ruitenberglaan 26, 6826 CC Arnhem, the Netherlands

 l.tijsma@gmail.com

Abstract. Game Maker is a game-design tool that uses a drag-
and-drop action system, along with built-in GML language, to
program the events and actions of a game. It has found a place
in education where it is used to create games, simulations and
other sorts of applications from elementary school on. It can be
used to introduce the OO paradigm in an introductory
computer science course, and to train a wide range of skills
across the whole of the curriculum.

Keywords: Game Maker, education, OO paradigm,
introductory CS course.

1 Game Maker
Game Maker [1] is a software application written in the Delphi
programming language by Mark Overmars. It was primarily
developed to create games, but it is also suitable for developing
applications to be used in a range of subjects, for example math or
science classes [4]. The feature that makes it interesting for novice
programmers is an interface that uses a drag-and-drop system.
However, the built-in interpreted Game Maker Language (GML)
extends the possibilities for customizing programs and expanding
features. Game Maker comes with a set of standard action libraries

Game Maker Workshop 49

that allow for easy implementation of movement, drawings, sound
and control structures, and it supports easy import of additional
resources. Its architecture supports such things as event detection,
level design, and object configuration [2], [3], [6]. Game Maker Lite
edition can be obtained free of charge. A more demanding
programmer wishing to make 3D games or to use extended graphic
options may want to purchase the Game Maker Pro version.

All these characteristics contribute to widespread use of Game
Maker in schools [5], [7], [8]. In a CS course, many programming
concepts, such as OOP, object vs. instances, inheritance, code
structuring, state machines, etc., can be introduced without having
to write any code. All students using Game Maker can learn and
practice a wide range of skills such as designing a game or other type
of application, using other applications to create their own resources,
writing project documentation, collaborating in a team, planning,
problem-solving, decision-making, and evaluation. Finally, students
love to work with it and are motivated to put extra effort into their
Game Maker project. A teacher said that:

� the biggest problem is that students spend too much time on
their games and forget other classes. While using Game Maker
you learn a great many things, from simple things like English to
more advanced things like creating design documents and writing
neural networks. Game Maker lets people learn without them
recognising it as homework but rather recognising it as a fun
challenge. That's the real power of Game Maker and that's why
many schools have been using it and will be using it in the
future �. [7]

2 Workshop
During the workshop we will demonstrate the main features of Game
Maker. We will then go on to discuss its possible uses in school, both
specifically within a CS class as well as in other classes. And we will
show examples of its use in schools in the Netherlands. We intend to

50 Nataša Grgurina and Lars Tijsma

conclude the workshop with a hands-on session where the
participants will get to work with Game Maker themselves1.

Fig. 1. Game Maker screenshot

1 Ideally, each participant should have a computer with Game Maker
installed.

Game Maker Workshop 51

3 Authors
�Nata a Grgurina is a computer science teacher educator at the

University of Groningen, as well as a CS teacher in a high school. She
has been looking for an attractive programming environment that is
simple enough for novices to start programming meaningful
applications right away, while providing an opportunity to teach
complex programming concepts at the same time. She believes to
have found this in Game Maker.

She conducted a version of this workshop with CS student
teachers at Vilnius University where it received very positive
feedback.

Lars Tijsma is a CS teacher and a theater devotee. He teaches
CS (previously at a high school and nowadays at the HAN University
of Applied Sciences in Arnhem), writes CS teaching materials and
advocates the use of games in education.

References
1. Game Maker website, www.yoyogames.com
2. Game Maker, Wikipedia, http://en.wikipedia.org/wiki/Game_Maker
3. Game Maker Language, Wikipedia,

 http://en.wikipedia.org/wiki/Game_Maker_Language
4. Nexus Research Groep,

 http://www.nexusresearchgroup.com/info_systems/games.htm
5. Game Maker Website Australia,

 http://www.users.on.net/~billkerr/g/ad.htm
6. Overmars, M., Habgood, J.: The Game Makers Apprentice: Game

Development for Beginners, Springer-Verlag, New York (2006)
7. Gamble, P.: Game Maker in Schools, In: Game Maker Technology

Magazine, Issue 16, June 2009, http://gamemakertech.info/
8. Make-A-Game, http://www.make-a-game.nl/

Personalisation of Learning Objects and
Environments for Informatics Science

Education in Lithuania

Eugenijus Kurilovas, Silvija Serikoviene

Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663
Vilnius, Lithuania

Eugenijus.kurilovas@itc.smm.lt; silvija.serikoviene@gmail.com

Abstract. Learning content and software personalisation issues
are very significant for the enhancement of quality of

�Informatics science (or Information Technologies IT)
education. The paper is aimed to analyse the problems of
personalisation of learning content and software in Informatics
science education, as well as their technological quality
evaluation and optimisation. The results of INSPIRE project in
Lithuania are analysed in more detail. Several scientific methods
and principles are used in the paper to provide some engineering
solutions for personalisation of IT teaching and learning.

Keywords: learning objects, virtual learning environments,
personalisation, informatics science education

1 Introduction
The aim of the paper is to analyse some personalisation problems of

�learning content (Learning Objects LOs) and software (such as LO
� �Repositories LORs, and Virtual Learning Environments VLEs)

for Informatics (or IT) subject education based on the results of
�INSPIRE project [10] and previous authors research. Learning

content and software personalisation issues are very significant for
the enhancement of quality of IT subject education as well as IT
integration into the other subjects. The vision of the Strategy on
Information and Communication Technologies (ICT) implementation

Personalisation of Learning Objects and Environments . . . 53

into Lithuanian education is achievement of learning personalisation
with the help of ICT application.

Informatics (or IT) is taught as separate subject in Lithuanian
comprehensive schools since the 5th grade. Students of 5-6th grades are
trained in information processing, text documents, printing, searching
on the Internet. Students of 7-8th grades concentrate on the use of IT
skills and focus on integration with other curriculum subjects, aims
to encourage students to apply IT for learning other things, enabling
them to reach the general level of computer literacy. Competence in
the use of IT is developed in teaching and learning of other subjects
� languages, mathematics, natural sciences, social sciences,
technology. IT course in of 9-10th grades aims to summarize the
available knowledge, to teach pupils to purposefully adapt existing
skills. IT course becomes more specific.

The basic notions, principles and methods applied in the paper are
as follows.

LO is referred to as any digital resource that can be reused to
support learning [23]. LORs are considered here as properly
constituted systems (i.e., organised LOs collections) consisting of
LOs, their metadata and tools / services to manage them [14].
Metadata is referred to as structured data about data [4]. VLEs are
considered here as specific information systems which provide the
possibility to create and use different learning scenarios and methods
[9]. Quality evaluation is defined as the systematic examination of
the extent to which an entity (part, product, service or organisation)
is capable of meeting specified requirements [11].

Different scientific methods are used in software engineering to
customise � LOs according to the particular users needs. The majority
of them deal with the implementation of flexible LOs metadata

�standards application profiles (APs) and search engines in the LORs
based on these approaches.

Different scientific methods are also used for quality evaluation of
learning software packages (such LORs and VLEs) and their

�optimisation for the particular learners needs. Multiple criteria
�evaluation method used by the authors is referred to as the experts

54 Eugenijus Kurilovas and Silvija Serikoviene

additive utility function presented further in Section 4 including the
�alternatives evaluation criteria, their values and weights.

Expert evaluation is referred to as the multiple criteria evaluation
of the learning software aimed at the selection of the best alternative
based on score-ranking results. According to [5], if the set of decision
alternatives is assumed to be predefined, fixed and finite, then the
decision problem is to choose the optimal alternative or, maybe, to
rank them. But usually the experts (decision makers) have to deal
with the problem of optimal decision in the multiple criteria situation
where the objectives are often conflicting. In this case, according to
[5], an optimal decision is the one that maximises the decision

�maker s utility.
The authors apply the software engineering principle which claims

that one should evaluate the software using two different groups of
� � � � �evaluation criteria internal quality and quality in use criteria.

� �Internal quality is a descriptive characteristic that describes the
quality of software independently from any particular context of its

� �use, and quality in use is evaluative characteristic of software
obtained by making a judgment based on criteria that determine the
worthiness of software for a particular project or user / group . It is
impossible to evaluate quality in use without knowing characteristics
of internal quality [7].

The rest of the paper is organised as follows. Section 2 presents
�INSPIRE project results in Lithuania, Section 3 one of the methods

�to personalise LOs, Section 4 evaluation, optimization and
personalisation of VLEs. Conclusion and results are provided in
Section 5.

2 INSPIRE Project Results in Lithuania
INSPIRE project has been proposed on the following reasons.

�Europe s future competitiveness in the global economy will depend to
a great extent on its supply of scientific specialists and on ensuring
that they are put to good use. Mathematics, Science and Technology
(MST), including computer science, environmental science and

Personalisation of Learning Objects and Environments . . . 55

engineering are vital for the development of the knowledge-based and
increasingly digital economy.

The INSPIRE project has proposed to set up a limited validation
observatory where 60 schools in Europe have been be proposed to
use, test, analyse the use of new LOs from European Learning
Resource Exchange (LRE) [18] portal in the field of MST. Through
this experimentation, special attention has been given and reported
on as regards: (1) the impact of the new LOs and teaching methods
at the level of pupils and their motivation, (2) the analysis of the pre-
requisites to be defined for enabling the teachers to integrate these
new techniques in their pedagogy, and (3) the critical success factors
to be mastered at the level of the teacher and the school for the
generalisation of such practices.

The authors while being INSPIRE coordinators in Lithuania have
performed the questionnaires-based survey of the MST teachers in 10
Lithuanian comprehensive schools. 10 IT teachers from 10 schools
have participated in the survey. 12 LOs on IT subject from LRE have
been proposed to the teachers to evaluate during the experiment in
real pedagogical contexts in their schools.

�Some results of this survey are presented further. Tables 1 3
�present the results of the survey aimed to analyse the IT subject s

�learners pre-requisites, enhanced competences (both general and
subject), learning and assessment methods and digital environments
(VLEs) used by IT teachers during the experiment, as well as the

�teachers conclusion of LOs usability in future.

Table 1. General information

Names Values Ratings
Learner profile
information

High knowledge / skills level 0
Average knowledge / skills level 9
Low knowledge/skills level 0
Gifted 0
Motivated 5
Needs personalisation 0

56 Eugenijus Kurilovas and Silvija Serikoviene

Learning aims /
General
competences

Communication in mother tongue 6
Communication in foreign language 4
Competence in MST 2
Digital competence 6
Learning to learn 3
Social competencies 1
Enterprising and Creativity 3
Personal and Cultural understanding 4

Subject
competences

Fit the curriculum 10
Do not fit the curriculum 0

Digital
environment used
in the experiment

Moodle 3
LeMill 1
Other 5
Not used 0

Conclusion on
LOs usability

To localise and use 3
To use without localisation 7
Not to use 0

Table 2. Learning methods used during the experiment

Learning methods Description Ratings
By information source Word-based methods 3

Visual-based methods 7
By theory and practice
ratio

Theoretical methods 0
Practice-based methods 10

By teacher and
students activity
relationship

Active learning methods 0
Passive learning methods 7

By authoritarianism
and humanity
relationships

Programme-oriented methods 4
Student-oriented methods 9
Authoritarian methods 1
Humane methods 1

By the students
activity creativity level

Reproductive methods 5
Creative methods 3

By the students
reasoning operations
relationships with the

Analysis 5
Synthesis 6
Abstraction and generalisation 3

Personalisation of Learning Objects and Environments . . . 57

logical forms and
shapes

Deduction and induction 1
Analogy 2
Hypothesis 2
Experiment 5

Table 3. Assessment methods used during the experiment

Description Ratings
Test 3
Credit 0
Practical assignment 8
Creative assignment 3
Self-assessment 2
E-Portfolio 0
Project work 1

Learning methods taxonomy in Table 2 has been developed
according to [21].

�Tables 1 3 show that all general competences were addresses by
the proposed LOs, and different pedagogically sound proactive
learning and assessment methods have been used during the

�experiment. In IT teachers opinion, VLE Moodle is the most
suitable digital environment to implement these learning and
assessment methods while working with personalised and
decontextualised LOs. They also think that the majority of LOs are
suitable to use without localisation, and the others require
localisation before implementation in school practice.

We can personalise LOs and VLEs according to the learners�
profiles and preferences concerning teaching / learning methods,
speed, etc.

Now let us analyse LOs and VLEs personalisation issues addressed
in INSPIRE using several scientific principles and methods known in
software engineering and described in the Introduction.

58 Eugenijus Kurilovas and Silvija Serikoviene

3 Personalisation of Learning Objects

3.1 Learning Objects Reusability
�In the authors point of view, one of the main criteria for achieving

high LOs effectiveness and personalisation level is LOs reusability [2].
The need for reusability of LOs has at least three elements: (1)
Interoperability: LO is interoperable and can be used in different
platforms; (2) Flexibility in terms of pedagogic situations: LO can fit
into a variety of pedagogic situations; and (3) Modifiability to suit a

� �particular teacher s or student s needs: LO can be made more
appropriate to a pedagogic situation by modifying it to suit a

� �particular teacher s or student s needs [19]. There are two main
conditions for LOs reusability elsewhere: (1) LOs have to fit different

�countries national curricula; (2) Different countries IEEE Learning
�Object Metadata (LOM) standard s APs have to be oriented towards

quick and convenient search of reusable LOs [13]. The principle of
ultimate increase of reusability of LOs is considered by the authors as
one of the main factors of e-learning systems flexibility [2] [3]. It was

�analysed that the flexible approach to the e-learning systems
�creation and development should be based on the idea of LOs

partition to two main separate parts, i.e., LOM compliant small
pedagogically decontextualised Learning Assets (LAs) as well as

�LOM and IMS Learning Design compliant Units of Learning UoLs
[3] [16].

�European LRE system s validation in Lithuania performed by the
authors while implementing FP6 CALIBRATE project [1] has shown
that the teachers prefer LOs from national repositories which have

� �the potential to travel well and can be used in different national
contexts. These reusable LOs preferred by the teachers are mainly
the small decontextualised LAs. Therefore in order to maximise LOs
reusability in Europe LRE should consist mainly of the
decontextualised LAs [16]. The results of the teachers-experts survey
performed by the authors in CALIBRATE show that the teachers
would mostly like to find pedagogically decontextualised reusable
LOs and therefore to have a service for quick and convenient search

Personalisation of Learning Objects and Environments . . . 59

of such LOs. These results are similar to INSPIRE results on LOs
implementation in educational practice. While searching for LOs in
CALIBRATE / LRE portal the experts have used browsing by
subject and advance search services. These advance search services
have not contained any services to ease the search of reusable LOs.

�The LOs in the portal are described according to the partners LOM
APs, and these APs have not contained any services to simplify the
search of reusable LOs. Therefore it took very much time for the
experts to find and choose suitable LOs for their lesson plans.

According to [13], the analysis of the existing and emerging
interoperability standards and specifications shows that: (1) The
majority of standards and specifications are not adopted and do not
conform to the educational practice; (2) There exists a problem of
complex solutions for the application of standards and specifications
in education; (3) Standards and specifications often do not cooperate.
First of all, in order to make it easier for educators to discover and
use LOs that addresses the needs of their students, to maximise reuse
of LOs and minimise the costs associated with their repurposing, the
good solutions are lacking for the specific application profiles of IEEE
LOM [13].

3.2 Customisation of Learning Objects Metadata
According to [4], the purpose of an AP is to adapt or combine
existing schemas into a package that is tailored to the functional
requirements of a particular application, while retaining
interoperability with the original base schemas. There are several
principles described in [4] providing a guiding framework for the
development of practical solutions for semantic and machine
interoperability in any domain using any set of metadata standards:
modularity, extensibility, refinement and multilingualism. One of the

�mechanisms for APs to achieve modularity is the elements
cardinality enforcement. Cardinality refers to constraints on the
appearance of an element. Is it mandatory or recommended or
optional? According to [4], the status of some data elements can be
made more stringent in a given context. For instance, an optional

60 Eugenijus Kurilovas and Silvija Serikoviene

data element can be made recommended, and a recommended data
can be made mandatory in a particular AP. On the other hand, as an
AP must operate within the interoperability constraints defined by
the standard, it cannot relax the status of data elements [4].

The authors have applied this cardinality enforcement principle in
their research. It was analysed that the main LOM elements which
vocabulary values could reflect the LOs ultimate reusability deal with
structure of LO, its functional granularity (aggregation) level,
educational type as well as the kind of relation of this LO with the

�others [16]. The results of the authors analysis of the European LRE
Metadata AP v3.0 have shown that it would be purposeful to
improve it in order to provide more quick and convenient search
possibilities for those searching ultimately reusable LOs (i.e., LAs) by
the means of changing (i.e., advancing / enforcing cardinality) the
status of a number of LRE AP elements.

These proposals deal with changing the status of the following
� � � �LOM AP elements from optional to recommended as well as from

� � � � � � �optional and recommended to mandatory :
1) 1.7 General. Structure;
2) 1.8 General. Aggregation Level;
3) 5.2 Educational. Learning Resource Type; and
4) 7.1 Relation. Kind (see Figure 1).

Fig. 1. Proposals on customisable metadata schema [13]

Personalisation of Learning Objects and Environments . . . 61

These elements should be included in the advanced search engine
� �for those looking for reusable LOs to use them as building blocks in

their own lesson plans, modules or courses. The authors believe that
the development of advanced search engine reflecting LOs reusability
level based on this research would considerably reduce the time for
the users to find and choose suitable LOs in the repositories.

There are more methods of customisation / personalisation of LOs
metadata. They could be, e.g., based on the customisation of

�controlled vocabularies, implementation of the learners profiles or
�users tags to search for preferred LOs in the repositories. The

extended search and management of controlled vocabularies by
desirable elements are also often implemented in the LOs repositories
to enhance the customisation of LOs for the personal users needs.

4 Optimisation and Personalisation of Virtual
Learning Environments

4.1 Virtual Learning Environments Quality Evaluation
Criteria
In order to choose the VLE suitable for personalised learners needs,
one should apply well-developed scientific methods for evaluation of
VLEs. One can divide evaluation methods of VLE quality to
pedagogical, organisational and technological methods. The aim of

�this chapter is to analyse VLEs technological evaluation method
� �the expert s additive utility function containing the alternatives

criteria values and their weights is proposed further for this aim.
Other criteria are out of scope of the paper.

�The authors analysis [15] of existing well-known VLEs evaluation
tools and methods shows that the analysed VLE technological
evaluation methods [22] [8] have a number of limitations:
5) The method developed in [22] practically does not examine

VLEs adaptation capabilities criteria.
6) The method proposed by [8] insufficiently examines general

technological quality criteria of VLEs.

62 Eugenijus Kurilovas and Silvija Serikoviene

In Methodology of Technical Evaluation of Learning Management
Systems (or VLEs) [22] the evaluation criteria expand on a subset of
the criteria, focusing on general technological aspects of VLEs:
7) Overall architecture and implementation: Scalability of the

system; System modularity and extensibility; Possibility of
multiple installations on a single platform; Reasonable
performance optimisations; Look and feel is configurable;
Security; Modular authentication; Robustness and stability;
Installation, dependencies and portability.

8) Interoperability: Integration is straightforward; VLE standards
support.

9) Internationalisation and: Localisable user interface; Localisation
to relevant languages; Unicode text editing and storage; Time
zones and date localisation; Alternative language support.

10) Accessibility: Text-only navigation support; Scalable fonts and
graphics.

Conversely to [22], in [8] the main attention is paid to the
adaptation set of criteria. These criteria are:
11) �Adaptability includes all facilities to customise the platform /

VLE for the educational institution needs (e.g., the language or
the design).

12) �Personalisation aspects indicate the facilities of each individual
user to customise his / her own view of the platform.

13) �Extensibility is, in principle, possible for all open source
products. Nevertheless, there can be big differences. For
example, a good programming style or the availability of a
documented application programming interfaces are helpful.

14) �Adaptivity indicates all kinds of automatic adaptation to the
�individual user s needs (e.g., personal annotations of LOs or

automatically adapted content).
�Therefore, in the authors opinion, a more comprehensive tool /

set of criteria for VLE technological evaluation is needed. It should
include General technological evaluation criteria and Adaptation
capabilities criteria [15]. On the other hand the comprehensive VLEs

Personalisation of Learning Objects and Environments . . . 63

�quality evaluation tool should include both general VLEs internal
� � �quality criteria and quality in use criteria [7] (see Table 4).

Table 4. VLE technological evaluation criteria [10]

Criteria
type

Criteria Sub-criteria

General
criteria

1) Overall architecture
and implementation

Scalability
Modularity of the architecture
Possibility of multiple installations
on a single platform
Reasonable performance
optimisations
Look and feel is configurable
Security
Modular authentication
Robustness and stability
Installation, dependencies and
portability

2) Interoperability Integration is straightforward
VLE standard support (IMS,
SCORM, etc.)

3) Internationalisation
and localisation

Localisable user interface
Localisation to relevant languages
Unicode text editing and storage
Time zones and date localisation
Alternative language support

4) Accessibility Text only navigation support
Scalable fonts and graphics

Adaptation
criteria

5) Adaptability Language
Design

6) Personalisation
aspects
7) Extensibility Good programming style

Availability of a documented API
8) Adaptivity Personal annotations of LOs

Automatically adapted content

64 Eugenijus Kurilovas and Silvija Serikoviene

The tool is suitable for the expert evaluation of both VLEs
� � � � � �internal quality criteria 1 4 and quality in use criteria 5 8. It
provides the experts the clear instrumentality who (i.e., what kind of
experts) should analyse what kind of VLEs quality criteria in order
to select the best VLE software package suitable for their particular
needs.

4.2 Experimental Evaluation of Virtual Learning
Environments

�Multiple criteria evaluation method is referred to as the experts
additive utility function presented further in the section including the

�alternatives evaluation criteria, their values and weights. The weight
�of the evaluation criterion reflects the experts opinion on the

�criterion s importance level in comparison with the other criteria for
the individual learner / user.

�The expert s additive utility function needs the methods for
measurement of the values and weights of VLEs evaluation criteria
presented in Table 4.

�The measurement criteria of the decision attributes quality are
mainly qualitative and subjective. Decisions in this context are often
expressed in natural language, and evaluators are unable to assign
exact numerical values to the different criteria. Assessment can be

� � � � � � � �often performed by linguistic variables: bad , poor , fair , good and
� �excellent . These values, e.g., used in [22] are imprecise and
uncertain: they are commonly called fuzzy values. Integrating these
different judgments to obtain a final evaluation is not evident.

Therefore, [20] propose to use fuzzy group decision making theory
to obtain final assessment measures. First, linguistic variable values
are mapped into triangular fuzzy numbers (l, m, u) (see Table 5).

Personalisation of Learning Objects and Environments . . . 65

Table 5. Linguistic variables conversion into triangular fuzzy numbers
(TFNs)

Linguistic variables TFN
Excellent (0.700, 0.850, 1.000)
Good (0.525, 0.675, 0.825)
Fair (0.350, 0.500, 0.650)
Poor (0.175, 0.325, 0.475)
Bad (0.000, 0.150, 0.300)

After the defuzzification procedure which converts the global fuzzy
evaluation results, expressed by a TFN (l, m, u), to a non-fuzzy value
E, the following equation has been adopted by [20]:

� �E = [(u l) + (m l)] / 3 + l. (1)

These non-fuzzy values E are suitable to be applied to measure the
ratings of the evaluation criteria of learning software packages such as
VLEs and LORs.

Table 6. Linguistic variables conversion into non-fuzzy values E according
to (1)

Linguistic variables Non-fuzzy value E
Excellent 0.850
Good 0.675
Fair 0.500
Poor 0.325
Bad 0.150

If we want to evaluate (or optimise) the technological quality of
VLEs for the particular learner needs (i.e., to personalise his / her
learning process in the best way according to their prerequisites,
preferred learning speed and methods, etc.), we should use the

�experts additive utility function together with the weights of
evaluation criteria. Expert evaluation is referred here as the multiple

66 Eugenijus Kurilovas and Silvija Serikoviene

criteria evaluation of software aimed at the selection of the best
alternative based on score-ranking results.

For example, for the most simple (general) case, when all VLE
evaluation criteria are of equal importance, the experts should
consider the equal normalised weights ai = 0.125 according to the
normalisation requirement

�
i=1

m

a
i
=1 , a i�0 .

(2)

for the VLEs quality evaluation criteria �i = {1, , 8} (see Table
4).

A possible decision could be to transform multi-criteria task into
one-criterion task obtained by adding all criteria together with their
weights. It is valid from the point of view of the optimisation theory,
and a special theorem exists for this case.

�Therefore one could formulate the experts additive utility function
as follows:

f � X �=�
i=1

m

a
i
f
i
� X � ,�

i=1

m

a
i
=1 , a i�0 .

(3)

The major is the meaning of the utility function (3) the better
VLE meets the particular learner needs.

The application of this method for evaluation of LORs quality has
been presented by the authors while implementing EdReNe [6]
project during the Workshop in Sestri Levante (Italy) in September
2008.. EdReNe brings together web-based repositories of LOs with
content owners and other stakeholders within education in order to
share, develop and document strategies, experiences, practices,
solutions, advice, procedures etc. on the organisation, structuring and
functionality of repositories [6]. The LORs quality assurance
strategies have been ranked the highest priority by the EdReNe
experts during the project Strategic seminar in Lisbon in June 2008.

VLE experimental evaluation results for general case, when all
criteria are of equal importance are presented in Table 7. The non-

Personalisation of Learning Objects and Environments . . . 67

fuzzy values E are calculated according to the equation (1), and all
VLE evaluation criteria here are of equal importance ai = 0.125.

Table 7. VLEs technological evaluation summary (all criteria, equal
weights)

Evaluation criteria ATutor Ilias Moodle
General criteria

Architecture and
implementation

0.500 0.325 0.850

Interoperability 0.675 0.675 0.500
Internationalisation and
localisation

0.325 0.500 0.675

Accessibility 0.850 0.325 0.500
Interim rating 2.350 1.825 2.525

Adaptation criteria
Adaptability 0.325 0.500 0.675
Personalisation 0.675 0.675 0.500
Extensibility 0.675 0.850 0.850
Adaptivity 0.325 0.150 0.325
Interim rating 2.000 2.175 2.350
Total evaluation rating 4.350 4.000 4.875
f(X) (weights = 0.125) 0.5437 0.5000 0.6093

These results mean that VLE Moodle meets 60.93% quality in
� � �comparison with the ideal (less than good), ATutor 54.37% (more

� � � � �than fair), and Ilias 50.00% (fair). According to this
experimental evaluation results, VLE Moodle is the best alternative
(among the evaluated) from technological point of view in general

�case. This alternative has shown the highest ratings of both internal
� � �quality evaluation (see General criteria ratings) and quality in use

evaluation (see Adaptation criteria ratings).
In more specific cases, e.g., if the experts (decision makers) would

like to select the most suitable VLE for the students with special
education needs / disabilities, they should choose higher weights for
the particular criteria: Accessibility (e.g., measuring weight a4 = 0.2)

68 Eugenijus Kurilovas and Silvija Serikoviene

and Personalisation (e.g., measuring weight a6 = 0.2). All the other
criteria weights according to the normalisation formula (2) should be
measured ai = 0.1.

In this particular case the experts should find that, differently
from the simple general case (see Table 7), both ATutor and Moodle
are the optimal VLEs for the learners with special needs (see Table
8):

Table 8. VLEs technological evaluation summary (all criteria, different
weights)

Evaluation criteria ATutor Ilias Moodle
General criteria

Architecture and implementation a1 = 0.1 0.0500 0.0325 0.0850
Interoperability a2 = 0.1 0.0675 0.0675 0.0500
Internationalisation and localisation a3 =
0.1

0.0325 0.0500 0.0675

Accessibility a4 = 0.2 0.1700 0.0650 0.1000
Interim rating 0.3200 0.2150 0.3025

Adaptation criteria
Adaptability a5 = 0.1 0.0325 0.0500 0.0675
Personalisation a6 = 0.2 0.1350 0.1350 0.1000
Extensibility a7 = 0.1 0.0675 0.0850 0.0850
Adaptivity a8 = 0.1 0.0325 0.0150 0.0325
Interim rating 0.2675 0.2850 0.2850
Total evaluation rating f(X) 0.5875 0.5000 0.5875

These results mean that both VLEs ATutor and Moodle meet
58.75% quality in comparison with the ideal for special needs

� � � �� �students (something between fair and good), and Ilias 50.00%
� �(fair).

4.3 Minimisation of the Experts Subjectivity
Another very complicated problem for such multiple criteria

�evaluation and optimisation tasks is minimisation of the experts

Personalisation of Learning Objects and Environments . . . 69

� �(decision makers) subjectivity. The experts subjectivity can
influence the quality criteria ratings (values) and their weights.

There are some scientific approaches concerning this item. One of
them is formulated in [12]. In general, the experts influence
importance is different, and therefore this importance should be
assessed using the appropriate methodology. It is important to form
the experts group purely by their competence. Furthermore, in

�conformity with [12], we should eliminate the extreme experts
assessments of the ratings and weights. In order to pursue the

�compatibility of the experts assessments we should calculate so-
called concordance rates W and distributions �2:

W=
12 S

r
2 �m3�m�

.
(4)

where r � the number of experts; m � the number of the
parameters under evaluation; S � the square sum of evaluated

� �importance rates values deviations from the experts aggregate
average. In its turn,

�
2=Wr �m�1�=

12 S

rm �m�1� .
(5)

�The compatibility of the experts assessments is considered
sufficient if the value of concordance rate W � is 0.6 0.7 [12].

5 Conclusion and Results
Learning content and software personalisation issues have been found
very significant for the enhancement of quality of Informatics
education while implementation of INSPIRE project.

Personalisation of learning content and software could be enhanced
by the presented LOs metadata customisation method and the
multiple criteria evaluation method suitable for evaluation of quality
of learning software such as LORs and VLEs.

70 Eugenijus Kurilovas and Silvija Serikoviene

The proposed VLEs multiple criteria evaluation method
�represented by the experts additive utility function (3) is based one

the transformation of the multiple criteria task into the one-criterion
task obtained by adding all criteria values together with their
weights.

This multiple criteria evaluation method is suitable to apply for
the VLEs practical expert evaluation to meet the particular learner
needs. Therefore, it is of practical importance for public and private

�sectors experts (decision makers), software engineers, programmers
and users.

References
1. CALIBRATE: FP6 IST CALIBRATE (Calibrating eLearning in Schools)

project web site. http://calibrate.eun.org
2. Dagien , V., Kurilovas, E.: Information Technologies in Education:ė

�Experience and Analysis. Monograph. Vilnius: Institute of Mathematics
�and Informatics, 2008 216 p. (in Lithuanian) (2008)

3. Dagiene, V., Kurilovas, E.: Design of Lithuanian Digital Library of
Educational Resources and Services: the Problem of Interoperability.
Information Technologies and Control. Kaunas: Technologija. Vol. 36 (4),
pp. 402--411 (2007)

4. Duval, E., Hodgins, W., Sutton, S. and Weibel, S. L.: Metadata Principles
and Practicalities. D-Lib Magazine, vol. 8, No 4, 2002.
http://www.dlib.org/dlib/april02/weibel/04weibel.html

5. Dzemyda, G., Saltenis, V.: Multiple Criteria Decision Support System:
�Methods, User s Interface and Applications. Informatica. Vol. 5, No 1--2,

pp. 31--42 (1994)
6. �EdReNe: EU eContentplus programme s Educational Repositories

Network project web site, http://edrene.org/
7. Gasperovic, J., Caplinskas, A.: Methodology to evaluate the functionality

of specification languages. Informatica. Vol. 17, No 3, pp. 325--346 (2006)
8. Graf, S.; List, B.: An Evaluation of Open Source E-Learning Platforms

Stressing Adaptation Issues. Presented at ICALT (2005)
9. Institute of Mathematics and Informatics. Research on Digital Learning

Tools and Virtual Learning Environments Implementation in Vocational

Personalisation of Learning Objects and Environments . . . 71

Education. Scientific research report, 2005, p. 80.
http://www.emokykla.lt/lt.php/tyrimai/194 (in Lithuanian)

10. INSPIRE: EU LLP INSPIRE (Innovative Science Pedagogy in Research
and Education) project web site,
http://inspire.eun.org/index.php/Main_Page

11. �ISO/IEC 14598-1:1999. Information Technology Software Product
�Evaluation Part 1: General Overview. First edition,1999-04-15

12. Kendall, M.: Rank correlation methods. Griffin and Co, London, p. 456
(1979)

13. Kurilovas, E.: Interoperability, Standards and Metadata for e-Learning.
In: G.A. Papadopoulos and C. Badica (Eds.): Intelligent Distributed
Computing III, SCI 237, pp. 121--130. Springer-Verlag Berlin Heidelberg
(2009)

14. Kurilovas, E.: Evaluation and Optimisation of e-Learning Software
Packages: Learning Object Repositories. In: Proceedings of the 4th

International Conference on Software Engineering Advances (ICSEA
2009). Porto, Portugal, September 20--25, 2009

15. Kurilovas, E.; Dagiene, V.: Learning Objects and Virtual Learning
Environments Technical Evaluation Criteria. Electronic Journal of e-
Learning. Vol. 7, Issue 2, pp. 127--136. Available online at www.ejel.org
(2009)

16. Kurilovas, E., Kubilinskien , S.: Interoperability Framework forė
Components of Digital Library of Educational Resources and Services.
Informacijos mokslai. Vilnius, Vol. 44, pp. 88--97 (2008)

17. LOM Repository: Lithuanian public repository for LOs metadata,
http://lom.emokykla.lt/public/

18. LRE: European Learning Resource Exchange service for schools web site,
http://lreforschools.eun.org/LRE-Portal/Index.iface

19. McCormick, R., Scrimshaw, P., Li, N., and Clifford, C.: CELEBRATE
Evaluation report.
http://celebrate.eun.org/eun.org2/eun/Include_to_content/celebrate/fil
e/Deliverable7_2EvaluationReport02Dec04.pdf (2004)

20. Ounaies, H.Z., Jamoussi, Y., Ben Ghezala, H.H. : Evaluation framework
based on fuzzy measured method in adaptive learning system. Themes
in Science and Technology Education. Vol. 1, Nr. 1, 2009, pp. 49--58
(2009)

72 Eugenijus Kurilovas and Silvija Serikoviene

21. � �iau iuk nien , L.; Visockien , O.; Talij nien , P.: iuolaikin sč ė ė ė ū ė ė
didaktikos pagrindai. Vadov lis. Kaunas: Technologija (in Lithuanian)ė
(2006)

22. Technical Evaluation of selected Learning Management Systems (2004).
https://eduforge.org/docman/view.php/7/18/LMS%20Technical
%20Evaluation%20-%20May04.pdf

23. Wiley. D. A.: Connecting Learning Objects to Instructional design
Theory: a definition, a Metaphor, and a Taxonomy. Utah State
University. http://www.reusability.org/read/ (2000)

Appendix
The work presented in this paper is partially supported by the
European Commission under the eContentplus � programme as part
of the EdReNe project, Project Number ECP-2006-EDU-42002. The
author is solely responsible for the content of this paper. It does not
represent the opinion of the European Commission, and the
European Commission is not responsible for any use that might be
made of data appearing therein.

Reflections on Software Tools
in Informatics Teaching

Peter Micheuz1

1 Alpen-Adria Universität Klagenfurt
Institut für Informatiksysteme

peter.micheuz@uni-klu.ac.at

Abstract. Undoubtedly, software tools play an outstanding and
dominant role in Informatics teaching. Currently we experience
a plethora of these tools in all areas of Informatics education.
The vast variety of still proliferating tools, together with their
immanent interdependency with underlying concepts and
purposes, issues a didactic challenge to all Informatics teachers.
Starting with related results of an empirical study in Austrian
upper secondary education, software tools are reflected from
different perspectives.

1 Introduction
Since its beginning, the history of Informatics education (not only in
Austrian schools) is not least the history of software and its use in
Informatics teaching. Any use of computers in the wide field of
Informatics education is inherently interwoven with using software in
its diversity and complexity. A comprehensive understanding of
Informatics education at schools encompasses three major highly
dependent fields as depicted in Fig. 1.

74 Peter Micheuz

Formal Informatics education at schools1 is characterized and
fundamentally influenced by computers and software. Not
surprisingly, within the subject Informatics the computer emerges as
− an abstract machine (as subject-matter and for theoretical

reflection),
− a concrete tool (for executing specific tasks and solving problems

practically),
− a versatile medium (for supporting teaching and learning

Informatics).
Software tools are ubiquitous. As immanent dynamic parts of

Informatics systems2 they play an exceptional role in all three
manifestations, mapping consistently to the pillars of Informatics
education as depicted in Fig. 1.

Software tools are also constitutive for informatics systems as
media. For some years already, in everyday life computers are
perceived rather as media than as tools. Perhaps Alan Kay gets to

1 Informatics is implemented in most countries as a separate subject in various
forms and in different extensions. Where this is not the case yet, it is claimed by
many stakeholders in form of resolutions.

2 � �An Informatics system is defined as the combination of hardware and software
(in a network environment) for solving application problems.

Fig. 1. Synthesis of Informatics Education [1]

Reflections on Software Tools in Informatics Teaching 75

�point of it by his intuitive definition: The Computer is a medium. I
�always thought it as a tool, a much weaker concept.

2 An Austrian Case Study

2.1 The Particular Situation in Secondary Academic Schools

� �This type of schools, also denoted as Gymnasium (grammar
school), comprises lower/upper secondary education and is attended
by approximately 200.000 out of 1.200.000 Austrian pupils and
students, aged from 10 to 18 years. The role of ICT/Informatics in
these schools has been described already in [2,3,4]. According to the
title of this paper, in this chapter additional empirical findings on
applied software (tools) will be given.

In a holistic view, Informatics education in Austrian secondary
�academic schools can be described euphemistically - as diverse, if

� �not somehow anarchistic . Due to lack of strict regulations and
standards, schools and teachers can act autonomously to a wide
extent. This applies in particular to the free choice of software tools.

Due to autonomy of schools, formal Informatics instruction in
lower secondary education is offered by each school in different ways
and extensions [6]. The use of standard software (MS Office) and
product training in dedicated Informatics lessons at ECDL-level3 are
the norm, whereas other software tools (e.g. webdesign and
programming tools) are rather exceptions. E-Learning develops in the
age group 10-14 years fairly well, with the learning platform Moodle
as the prevalent backbone serving as content delivery and
communication tool.

In this chapter I draw on an online-survey which I conducted in
2007. It focuses on findings about software tool issues in upper
secondary level.

3 European Computer Driving License

76 Peter Micheuz

2.2 Informatics in the 9th grade

In contrast to lower secondary level, Informatics in the 9th � grade
the first year in upper secondary education, where students are 15
years old - is obligatory and mainly (input)controlled by a compact
and open curriculum [7]. As a consequence the range of software used
in these lessons is very wide. The results of the survey reveal a clear
picture about the setting of priorities in this age group, reflecting the
main subject matters in this discipline.

In Fig. 4 the eighteen most frequently used software tools are
listed. The diagram shows the prevalence of Microsoft® (MS) name-
branded software products. Open source software as Phase, a
proprietary German free HTML editor, Open Office and the image
processing software Gimp play (still) a minor role.

Fig. 2. Concrete software products used in the 9th grade (n = 270).

Fig. 3. Occasionally used tools with max. three nominations from 270
teachers.

Obviously, the first semester is dominated by branded standard
software tools, whereas in the second semester database software,

Reflections on Software Tools in Informatics Teaching 77

image processing and programming languages as Delphi, Visual
Basic, Robot Karol, VBA and even Javascript gain some currency.

Austrian teachers seem to be very creative in harnessing even
seemingly exotic tools in their Informatics lessons. The free
webeditors Bluefish and Topstyle, as enumerated in the tag-cloud
shown in Fig. 3., are examples for that assertion.

2.3 Informatics in the 10th � 12th grades
The content-related part of the central curriculum for the elective
subject Informatics which is chosen by about 20% of the students in
the 10th � 12th grades (16 - 18 years) consists of a random list of
topics, such as
− principles of information processing,
− concepts of operating systems, networks and of programming

languages,
− extensions of essentials of Informatics, algorithms and data

structures,
− artificial intelligence and social/legal aspects.

This comprising curricular input raises the question of utilized
software tools. The answer is given by about 25% of the responding
teachers for these age groups. As a result, database software,
webdesign tools, programming languages and client-server tools come
into play in the course of higher grades at the expense of standard
software which still matters especially in the 10th grade.

� �Viewing at the impressive remaining software tool jungle , the
� �old Roman proverb quot capita, tot sententiae can be replaced by

� �quot capita, tot instrumenta. .

78 Peter Micheuz

Fig. 5. Other tools used (max. three nominations by 100 teachers)

2.4 About Software Products and Tools
In the same online-survey Informatics teachers have been asked if
they are interested in Informatics-related in-service training, and if
so, they should propose their favorite topics. 190 out of all
responding 400 teachers nominated 470 proposals.

Fig. 4. Concrete software products used in the 10th � 12th grades (n ~ 100)

Reflections on Software Tools in Informatics Teaching 79

Fig. 6. Aggregated proposals for in-service training

A further qualitative analysis has lead to a first attempt to
categorize and sharpen the view on software tools in terms of
application and development software.

Table 1. � In-service training: Allocation of teachers proposals

Concrete
products

Specific
activities

and general
tools

Application software 99 64 35%
Development software 103 55 34%
Tool independent
concepts
and other general
topics

149 31%

It can be inferred that Informatics teachers often think in terms

of concrete software products. This finding correlates considerably
with experiences related to in-service courses for teachers4. Courses

� �where concrete products are offered are much more accepted than
� �abstract general topics.

4 In-service training and further education are for Austrian teachers at secondary
academic schools not obligatory. In the past and dependent from an attractive
offer, especially Informatics teachers showed much interest in in-service training.
There is evidence that this interest is decreasing.

80 Peter Micheuz

3 Teaching Tool-based Skills and Knowledge
The ways in which teachers cope themselves with software tools, and
what is more important, how they deal with them in different

�classroom settings can be well mapped by Kolb s learning style model
[7] as depicted in Fig. 7. When thinking of teaching basic IT-skills in
the context of standard software, many didacts complain about mere

� �product training and teaching pushing the buttons , and thereby
disregarding the underlying concepts of the tools. In [8,9,10] different
methodical approaches in teaching text processing are described. The
authors address the task of imparting practical skills combined with

�theoretical underpinnings and thus traversing Kolb s model at least
� �to abstract conceptualisation .

A French study about spreadsheet skills and knowledge [10]
revealed considerable deficits among junior high school students, due
to minimal training at one stage, whereby students do not master
even basic principles of software interface, not to mention basic
concepts as variables, data types and functions. The main finding of

� �that study - occasional use of software is not sufficient - is
remarkably redolent of the old but proved � saying practice makes

�perfect .

Fig. 7. �Kolb s learning styles

Reflections on Software Tools in Informatics Teaching 81

However, as Mittermeir [11] insinuates in the analogy
calculating: mathematics = ICT : Informatics, teaching software tools
should not be overloaded by formal and abstract concepts especially
for early age groups. In primary schools nobody would think of
introducing simple counting by referring to Peano axioms. We have
to consider this especially in case of teaching and training ICT-skills
with regard to standard software, which usually takes place in lower
secondary education. Imparting abstract and formal concepts in
viewing at standard software through an object oriented lens [cmp. 8]
is definitely a viable option in upper secondary education. However,
at lower secondary level it is a subject for debate.

The following assertion, found at [12], deserves a deeper
�reflection: A child does not discover the world by learning abstract

rules. Instead it learns by looking at concrete examples. An example
contains the rules as well. In contrast to rules, the recognition of
examples can be based on tangible reality. The knowledge extracted
from an example serves as a pattern that is used to remember facts
and to construct new solutions. When grown-ups are about to learn

�something or have to apply unknown tools, they are put into a child s
position again. They will favor concrete examples over abstract rules.
The rules will happily be generated automatically, for this is how the
brain works.�

�At first sight, this contradicts with Kolb s model. But thinking
� �about this model from the learner s and not from the teacher s

perspective, concept building by concrete examples has to be
regarded as a promising option.

Using software tools in combination with understanding their
underlying concepts must be seen in a wider context of the practice-

�theory issue. Having Bloom s taxonomy [13] in mind, practical
activity and basic knowledge about a particular software tool build
the basis of this model. A more comprehensive theoretical body of
knowledge about understanding and applying software tools address

�higher cognitive levels in Bloom s pyramid.
Hartmann [14] presents a further model addressing the practice-

theory issue. Accordingly, in classroom settings a clear distinction

82 Peter Micheuz

between theory and practice is proposed. This model can be applied
even for skills training with concrete standard software. For example,
with regard to word processing, the advanced subject matters
� � � �format-templates or form letters should be taught separately
from practicing and exercising with the concrete tool. This leads to
the versatile model of a matrix, which can be applied not only to
software tools, but also to real-world environments.

Table 2. General model of tools

Concepts Practical realization

Tools

What is product
independent with
regard to tools?
Typical tasks and
procedures

How are tool concepts
realized with a
concrete product?

Objects

What is product
independent with
regard to the
corresponding objects?

Attributes, categories

How are object-
concepts realized in
concrete object types?

Further, teachers should not only consider the difference between
concrete practicing and abstract concepts, but also be aware of the
strict distinction between particular software tools and their
associated objects.

In [18, pp. 147-149] convincing examples (Picture editing, E-
Mail, operating systems, algorithms and data structures) illustrate
the power of this model. Another concrete example, publishing
websites on the internet, is given in the table below.

Reflections on Software Tools in Informatics Teaching 83

Table 3. Special software tool model: Publishing websites

Concepts Practical realization

Software tools

(Web)editors, client-
server-support (FTP),
CMS,
Webserver

MS-Word,
Dreamweaver
CMSimple, Typo 3,
Joomla
Apache-Server

Objects protocols,
textfiles, documents

TCP/IP, HTTP
HTML, CSS

Being aware of inherent shortcomings of all models as miniature
representations of reality, they are helpful in reducing complexity in
didactics issues though. A deep understanding of these models by the
learner means that he/she has to be a reflective practitioner [15] and
competent user. This advanced state of proficiency can be best
reached by extending teaching methods. Therefore an appropriate
blend of problem-oriented, task-oriented, menu-oriented, function
oriented, concept oriented and abstract-oriented approaches, based

�on contextual and situational teachers didactic skills, is necessary
[16].

4 Classification and Criteria of Software Tools
At first sight and illustrated in chapter 2, we face a plethora of
software tools in Informatics teaching in Austrian higher secondary
education. Due to the complexity and versatility of some software
tools, their distinct assignment into classification schemes is a
demanding task. Below, a first approach to classify the wide range of
used and taught software is attempted.

84 Peter Micheuz

Table 4. Classification scheme for software tools (used in Informatics
lessons)

Dimension Domain Examples and remarks

Scope

Is it an application,
development,
simulation,

creativity, gaming or
authoring tool?

� �The classics standard software
and programming languages are
currently extended by large
frameworks as Java, .Net
technologies, APIs on the one hand
and small educational tools on the
other

Didactics
Which Informatics
concepts does the

tool cover?

Invisible to the user, this
� �addresses, fundamental ideas as

algorithms, file and data types,
client-server principle, object
orientation and functional
modeling.

Appropriateness
In which age group
should the tool be

used?

As toys, books and computer
games in general, also software
tools are suitable for various age
groups.

Functionality How many features
are supported?

Visible to the user, but often not
recognized. Many tools suffer from
� �featuritis .

Complexity
How many

application areas are
covered?

Standardsoftware, as the
trademarks Excel and Flash, are
application and programming
tools. Scratch, for instance, is a
painting-, creative- and
programming tool.

Ergonomics
�Is the tool easy-to-

�use and neatly
arranged?

Luckily, we observe a trend to
� �better usability and

standardization. This issue relates
to a high degree to habituation.

Legality
Commercial software

or Open source?

This important aspect addresses
the pirate copies. This issue must
still be considered as a legal gray
zone.

Costs
Are there special

license and pricing
conditions?

For educational purposes (in order
to avoid legal problems) open
source could be the choice in the
future.

Reflections on Software Tools in Informatics Teaching 85

Dimension Domain Examples and remarks

History
For how long has the
tool been used? Is it

a �day fly�?

The more than twenty years old
� �computer language Turbo Pascal

is still used in some Informatics
�lessons

Technicality
Which OS does the
tool support? Are

there stable releases?

Windows or Linux is not only a
� �question of faith . Exotic software
could make trouble.

Standards
Does the tool serve
basic standard(s)
and established

formats?

� �The browser war between
Internet Explorer or Mozilla
Firefox and complying with
standards is permanently a matter
of concern. Are open standards
supported?

Singularity Are there equivalent
products available?

Especially many web 2.0 tools are
interchangeable at will. A market
adjustment is needed urgently.

Coverage Where/how is the
tool used?

Is the software proprietary? Is it
used in many countries? Is it used
also commercially?

Locality
Is it a stand alone -,

network or
web 2.0 application?

� �Cloud computing is a current
neologism and trend in computing
with high expectations.

In view of the ongoing proliferation of software tools especially of
that available on the web (in the cloud), this classification scheme
may serve as useful orientation for categorizing appropriate tools for
Informatics teaching.

Two of these criteria, costs and locality, will affect the
organizational setting of Informatics education rather than its
quality. Obviously, currently we face the shift to increased
educational use of open source software, and moreover, there is a
remarkable dynamics in web 2.0 applications. The transition from
WWW to the WWC (world wide computer), as Nicholas Carr

� �predicts, can be expressed by the neologism cloud computing and is
currently associated with high expectations.

On closer examination, however, locally installed standard
software5 is still dominating Informatics lessons, especially at lower

5 In recent years, all federal schools in Austria were centrally equipped with
Microsoft Windows and Office Software. However, the future about using mainly

86 Peter Micheuz

secondary and the beginning of upper secondary level. Regarding
�these complex tools, Pareto s principle, also known as the 20-80 rule,

can be applied in two respects. First, just a few software tools and
products cover a wide range of Informatics teaching, and many
individual and proprietary tools are applied for the rest. Second, the
functionality of such software is used only partially and, in typical
classroom settings, it is far from being exhausted. However, even
with a restricted set of features a wide range of tasks can be
accomplished. For example, MS Excel with the embedded language
VBA must be considered as an application and development tool,
although many teachers are not aware of that. This raises a
fundamental didactical issue and methodological question which has
to be decided individually by the teacher: Is it more appropriate to
exploit the full conceptual potential of a software tool or should the
students get acquainted with different special tools instead? This is
an interesting topic for future research.

5 Concluding remarks
Compressing the quasi infinite spatial of software tools related to
Informatics teaching into a finite paper might appear as an outsized
challenge. Accordingly, every attempt to accomplish this task can not
raise the claim of completeness. However, in view of the enormous
influence which software tools exert in everyday Informatics lessons,
it is a worthwhile undertaking.

Beginning with a glimpse on software tool usage in Austrian
schools, the focus in this paper changed to didactic issues. All tools
have particular purposes and never should be an end in itself. The
question of teaching tool skills and competences, together with the
combination of profound tool knowledge including its underlying
concepts, has been discussed. This should be still a matter of concern
for future research. Finally, a classification scheme was proposed in
order to provide orientation and guidance for the plethora of current
software tools.

commercial software at schools is uncertain.

Reflections on Software Tools in Informatics Teaching 87

Antoine de Saint-Exupery is said to have remarked �, Technology
�develops from the primitive to the complicated to the simple. In

case of so many different software tools, it is evident that we will stay
in the state of complicatedness still for a while.

� �Men have become the tools of their tools. This quote from
Henry Thoreau who lived in the 19th century should cause more

�worry

References
1. Hubwieser, P.: Didaktik der Informatik. Springer Verlag, Berlin, 2003
2. �Micheuz, P.: 20 Years of Computers and Informatics in Austrian s

Secondary Academic Schools. In From Computer Literacy to Informatics
�Fundamentals, edited by R. Mittermeir, Springer, Berlin, 2005, pp 20 31

3. Micheuz P.: Some Findings on Informatics Education in Austrian
Academic Secondary Schools, in: Informatics in Education, Journal,
Lithuanian Academy of Sciences, Vilnius, 2008

4. �Micheuz, P.: Informatics Education at Austria s Lower Secondary Schools
between Autonomy and Standards. In The Bridge between Using and
Understandig Computers, edited by R. Mittermeir, Springer, Berlin, 2006,

�pp 189 198
5. Haider G.: Schule und Computer, Österreichischer Studienverlag, 1994
6. Micheuz P.: Zahlen, Daten, Fakten zum Informatikunterricht an den

Gymnasien Östereichs. In: Proceedings of 13.INFOS: Fachtagung
�Informatik und Schule INFOS 2009.

7. Kolb D.A.: Experemental Learning: Experience as the source of learning
and development. Englewood Cliffs. New York, Prentice Hall, 1984

8. Voss S.: Informatics Models in Vocational Training for Teaching Standard
Software. In Mittermeir R. (ed.) From Computer Literacy to Informatics

�Fundamentals, Springer, Berlin, 2005, pp 145 155
9. �Schulte C.: Duality Reconstruction Teaching Digital Artefacts from a

Sociotechnical Perspective. In: Mittermeir R. (ed.) Informatics Education
� Supporting Computational Thinking, edited by R., Springer, Berlin,

�2008, pp 110 121
10. Tort F.:, Spreadsheet Knowledge and Skills of French Secondary School

�Students. In: Mittermeir R. (ed.) Informatics Education Supporting
�Computational Thinking, edited by R., Springer, Berlin, 2008, pp 110

121

88 Peter Micheuz

11. Mittermeir R.: Was ist Schulinformatik? Rechnen:Mathematik
= ??:Informatik in Donhauser D., Reiter A.(eds): ME 2001, ÖVE
Schriftenreihe Nr. 26, pp. 3-13.

12. Kühne T.:, A Functional Pattern System for Object-Oriented Design
(1999), http://www.mm.informatik.tu-darmstadt.de/~kuehne/tfps/fps-
sans-escher.pdf (accessed 2009-10-20)

13. Krathwohl, D. R., Bloom, B. S., & Masia, B. B. (1973). Taxonomy of
Educational Objectives, the Classification of Educational Goals.
Handbook II: Affective Domain. New York: David McKay Co., Inc.

14. Hartmann W., Näf M.: Reichert R., Informatikunterricht planen und
durchführen, Springer, Berlin, 2006

15. Schön D. A.: The Reflective Practitioner, Temple Smith, London, 1983.
16. �Csiki N., Zsako L. ICT Teaching Methods Applications. In: Mittermeir

R., Syslo M. (eds.) Informatics Education contributing across the
curriculum, Faculty of Mathematics Computer Science, Nicolaus
Copernicu University, Torun, 2008, pp. 47-53

A Reflective Practitioner's Perspective on
Computer Science Teacher Preparation

Noa Ragonis1,2, Orit Hazzan1

1 Department of Education in Technology and Science,
�Technion Israel Institute of Technology, Haifa, 32000, Israel

{noarag, oritha}@technion.ac.il
2 School of Education, Beit Berl College, Doar Beit Berl, 44905, Israel

noarag@beitberl.ac.il

Our question then is not so much
whether to reflect as what kind of
reflection is most likely to help us
get unstuck. (Schön, 1983, p. 280)

Abstract. The paper presents a research aimed at examining
reflective processes carried out by prospective computer science
(CS) teachers. The reflections were facilitated during a Method
of Teaching CS course and during a tutoring process that was
integrated into the course. In the paper, we present the research
layout and its findings. Data analysis revealed that these
reflective processes encourage the prospective CS teachers to
function as reflective practitioners (Schön, 1983, 1987).
Specifically, the prospective teachers exhibited eight viewpoints
when reflecting, first, as learners in the Method of Teaching CS
course, and second, as teachers while practicing teaching in the
tutoring process. In light of the research findings, we discuss the
importance of including reflective processes in CS teacher
preparation programs. We suggest that reflective processes are
especially important in CS education due to their potential
contribution in promoting and improving problem-solving
processes, which are central elements in CS.

90 Noa Ragonis and Orit Hazzan

Keywords: Computer science education, computer science
teacher preparation, reflection, reflective practitioner, tutoring
model, reflection in teaching, Method of Teaching CS course.

1 Introduction
In this paper we examine the reflective practitioner (RP) perspective
[10], [11], in the context of computer science (CS) teacher
preparation. The RP perspective guides professional people
(architects, managers, musicians, educators, and others) to rethink
and examine their professional creations during and after the
accomplishment of the creation process. The working assumption is
that such reflection enhances the proficiency and performance within
such professions. In this spirit, we suggest that adopting the RP
perspective may improve the CS prospective teachers' skills of
learning and teaching problem solving, which are rooted in the core
of the CS discipline, and are known to be both hard to learn and
hard to teach [1], [4], [14].

The findings presented in this paper were revealed in a research
whose objectives were to investigate the pedagogical contribution of
integrating a tutoring model into the Method of Teaching CS course.
Reflective processes emerged as one of the most central elements in
promoting the prospective teachers' teaching skills and their
awareness to pedagogical tools that can promote their pupils'
problem-solving skills. Indeed, our research findings indicate that
reflective processes improved the prospective CS teachers' teaching
skills, and further, they used reflective processes to enhance their
tutees' problem-solving skills. Specifically, we present eight
viewpoints on reflection that the prospective CS teachers elicited, on
the one hand, as learners in the Method of Teaching CS course, and
on the other hand, as teachers while practicing teaching in the
tutoring process.

The paper begins with a description of the concept of reflection
and the RP perspective, followed by a description of the research
framework. Then, we broadly present the research findings according
to the eight above mentioned viewpoints on reflection. Finally, we

A Reflective Practitioner’s Perspective on Computer Science . . . 91

summarize and discuss further implications of applying an RP
perspective in CS education.

2 The Reflective Practitioner Perspective
The two main books that present the reflective practitioner (RP)
perspective are Schön's The Reflective Practitioner [10] and
Educating the Reflective Practitioner [11]. The first book presents
professions in which reflective thinking is inherent, such as
architecture and management; the second book focuses on how to
educate students of such professions to be RPs. In these books, Schön
analyses the added advantages that can be obtained from

� �continuously examining one s practice and one s thinking about that
practice.

According to our literature review, one of the significant ways to
acquire pedagogical-disciplinary knowledge, which also increases
teachers' motivation, involves activities performed in actual teaching
situations [5] and provide opportunities that guide the teacher
towards reflective processes that address coping with learners'
thinking [5], [16]. More recently, Khisty and Khisty [3] and Stroulia
and Goel [15] discussed how to use reflection to teach problem-
solving processes and Hazzan [2] applied this perspective to software
engineering education. In a similar way, we hope to contribute by
addressing the RP perspective with respect to CS teacher
preparation, as is described in what follows.

In our research, the prospective teachers' reflective processes
included reflection on learning activities performed in the Method of
Teaching CS course and reflection on the tutoring activity, in which
each student in the Method of Teaching CS course tutored a student
in an introductory CS course, with a focus on problem-solving
processes. The tutors' reflection included a teacher's perspective
(their own perspective) and a learner's perspective (their tutees'),
and reflection on feedbacks they received from the tutoring
coordinator as well as from their fellow tutors. Most of the reflection,
as is illustrated in the Findings section, led to the modification and

92 Noa Ragonis and Orit Hazzan

refinement of the tutors' actions both in the course and in the
tutoring process. Furthermore, according to the prospective CS
teachers' standpoints, the reflection itself, as well as the awareness to
reflective processes, improved and developed their teaching skills.
The prospective CS teachers stated that they intend to use reflection
in their future professional work as CS teachers, first, by reflecting on
their own teaching, and second, by leading their pupils to reflect
during problem-solving processes in order to improve their solutions.

3 Research Framework

3.1 The Methods of Teaching Computer Science Course
Teacher preparation programs include a component that focuses on
pedagogical content knowledge (PCK) which is what a teacher is
required to know in order to teach a certain subject matter [12], [13].
In the context of the research described in this paper, this knowledge
is acquired in the Methods of Teaching Computer Science course
taught at the Technion's Department of Education in Technology and

�Science. The course aims at broadening the prospective CS teachers
PCK and sets the basis for the in-school practical training that takes
place after it. The course syllabus where RP perspective was applied
is presented in [9].

Course structure and population. The course consists of 112
hours of classes and training, divided into two semesters, each of
which is devoted to different high school curriculum units. The course
participants are prospective CS teachers who usually take the course
during their third year of study (out of four).

Course objectives. The course's main objective is to construct a
varied toolbox for the prospective CS teachers to use during their
practicum and in their future work as CS teachers. The following
objectives are related to reflective processes:
1) Expose the prospective CS teachers to difficulties encountered by

learners when learning different topics from the CS curriculum;

A Reflective Practitioner’s Perspective on Computer Science . . . 93

2) Enable the prospective CS teachers to master pedagogical skills
for teaching CS considering different kinds of learners;

3) Enable prospective CS teachers to master pedagogical tools for
teaching CS, including the creation of a supportive and
cooperative inquiry-based learning environment;

4) Expose the prospective CS teachers to a variety of CS teaching
methods;

5) Expose the prospective CS teachers to the research conducted in
CS education and to its application in teaching processes.

Teaching methods used in the Methods of Teaching CS
course. The course illustrates how to actively apply a variety of
teaching principles and methods in CS teaching and includes lectures,
workshops for developing different teaching materials, hands-on
experience with various software programs, practice of teaching in the
course plenum, and many discussions.

Reflection as expressed in the Methods of Teaching CS
course. Two main kinds of reflective processes were integrated in the
course: (1) reflection that takes place during the accomplishment of

�the course assignments as learners, and (2) reflection that
�accompanies the tutoring activity as teachers. The two perspectives

enable the prospective teachers to increase their awareness of the
potential advantages of reflective processes. The following activities
reflect the wide and deep attention given in the course in order to
educate the prospective CS teachers to become RPs:
1) Exposure of the concept of reflection, including reflection before

an action takes place, during its performance and after it has been
completed;

2) Reflection on personal experience of each prospective CS teacher
in the course. This includes, for example, self-reflection after
presenting a teaching material prepared by the student to his or
her peers in the course plenum, and reflection on feedback they
receives from their peers and from the course instructor.

94 Noa Ragonis and Orit Hazzan

3) Scenario illustrations of how reflective process can enhance CS
learners' problem-solving skills in general and in the context of
high school CS classes in particular;

4) An ongoing reflection process takes place as part of the tutoring
model;

5) At the end of each semester, each prospective CS teacher submits
a written reflection on his or her own reflection processes during
the course.

3.2 The Disciplinary Focus Tutoring (DFT) Model
One of the main activities carried out in the Methods of teaching CS
course is the tutoring activity. The objective of the tutoring is to
promote the prospective CS teachers' skills in guiding learners
through problem-solving processes in CS. Since the tutoring focused
on learning the discipline, it is referred to as Disciplinary Focus
Tutoring (DFT). The innovation of the DFT method is that it
focuses on the tutor rather than on the tutees, as do many other
tutoring programs. The tutors are prospective CS teachers enrolled in
the Methods of Teaching CS course, and the tutees are college or
high school students enrolled in an introductory CS course. DFT is
based on two developing levels: active imparting to the prospective
CS teachers of pedagogical-disciplinary knowledge during the
Methods of teaching CS course, and experiencing and applying this
knowledge in actual teaching situations with their tutees as part of
the tutoring process, as is elaborated upon below. Tutoring takes
place in tutor-tutee pairs that meet for five sessions. Each tutor
participates in two cycles of tutoring, one in each semester, with a
different tutee in each cycle. During the sessions, the tutees raise
difficulties they encountered while developing solutions to given
problems, and the tutor guides the tutee through the problem-solving
process. Tutoring is based on the tutor's identification of the tutee's
difficulties, and the subsequent application of different teaching
strategies to overcome such difficulties. The serial nature of the
sessions enables the tutor to receive feedback on the knowledge the
tutee acquired in previous sessions, thus providing the tutor with an

A Reflective Practitioner’s Perspective on Computer Science . . . 95

opportunity to reflect on his or her own teaching. Tutoring a different
tutee in each cycle enables the tutor to compare and draw
conclusions from the first cycle and apply them to the second cycle.
A coordinator of the tutoring activity provides the tutors with
ongoing support, within a coaching framework.

Tutor obligations. For each of the two tutoring cycles the tutors
are required to:
1) Complete a feedback sheet for each tutoring session and submit

it to the tutoring coordinator (see Table 1). The aim of the
feedback sheet is to encourage and foster reflection by the tutors
when functioning as teachers.

2) Hold individual meetings with the tutoring coordinator; one
following the first tutoring session and one after completing each
cycle of five tutoring sessions.

3) Present the Methods of Teaching CS course plenum with one
episode from the tutoring process.

4) Complete a final summarizing feedback questionnaire.
5) Optional: Request the tutees to fill out a feedback sheet after

each tutoring session. The idea of creating the tutee feedback
sheet came from one of the tutors, and was complied jointly by
the entire group of tutors. The decision whether or not to ask
the tutee to fill it out was left to the tutors. The mere idea of
constructing such a feedback form, however, can be seen as
assimilation of the idea of reflection.

96 Noa Ragonis and Orit Hazzan

Table 1. Tutor feedback worksheet

A. General
1. Describe the subject of the session:
2. Describe the problem discussed:
3. Describe the course of the session:

B. Tutor Feedback
1. What concept/s do you think constituted a difficulty for the tutee?
2. Describe the difficulty/misconception you mentioned in your

answer to Question 1.
3. What teaching tools did you use to help the student overcome the

difficulty/misconception?
4. Did you use knowledge acquired in the Methods of Teaching

Computer Science course or knowledge you acquired in another
course?

5. What more would have helped you provide the necessary
assistance? (Additional disciplinary knowledge, additional teaching
knowledge, what kind of knowledge? which tools?)

6. If you could repeat this tutoring session, what would you do
differently?

7. What is your personal feedback at this stage of the tutoring? (The
nature of the communication between your tutee and yourself, the
quality of support, your advancement of the tutee, your benefit
from the tutoring, any difficulties, etc.)

A Reflective Practitioner’s Perspective on Computer Science . . . 97

Feedback from the course coordinator. Each submitted tutor
feedback sheet was responded with a written feedback by the course
coordinator. Such feedback included encouragement to pursue
teaching and pedagogical processes applied in the session, calling of
attention to specific processes that could be improved, guidance to
alternative teaching tools to help the tutees overcome their obstacles,
and recommendations for additional problems that could be
presented to the tutees. In addition, the course coordinator employed
an open door (and open email) policy, so that tutors could seek
advice on any issue or concern, at any time.

Additional details about the DFT model are presented in [6], [7],
[8].

3.3 Research Description
Research objectives. The main research objective was to
investigate the contributions of the DFT model to the prospective CS
teachers and to examine its practicability. In this paper we examine
the following question in depth: How do prospective teachers become
reflective practitioners?

Research population. The research population consisted of
students who were enrolled in the Methods of Teaching Computer
Science course described in Section 3.1. The data was collected
during two different academic years: 2006-2007 and 2008-2009, with
ten students each year.

Research methodology and tools. The research employed both
qualitative and quantitative tools. Although we recognize that
quantitative data are not significant in small groups, they are used in
this exploration to support the qualitative findings. To validate the
findings, the following research tools were used:
1) Interviews were held with the tutors following their first tutoring

session with their respective tutees and again after the final
session.

98 Noa Ragonis and Orit Hazzan

2) Tutoring Session Feedback Worksheets: Each tutor completed a
Session Feedback Worksheet after each of the five tutoring
sessions held each semester.

3) An overall evaluation questionnaire was completed by the tutors
at the end of each semester, consisting of 36 position questions
and 16 open questions. Several questions addressed the RP
perspective employed in the course.

4) An overall evaluation questionnaire was completed by the tutees
at the end of each semester, consisting of 13 position questions
and 5 open questions.

5) A summarizing interview was held with 6 of the tutees.
6) Various homework assignments.
7) �Researcher s diary.

4. Research Findings: Prospective CS Teachers as
Reflective Practitioners

The results presented in this section emerged from a comprehensive
data analysis of the data gathered by the various research tools.
Specifically, we identified eight viewpoints (VP) on reflection that the
prospective CS teachers exhibited. In what follows, we explain the
essence of each viewpoint together with one or two illustrative
excerpts taken from the different data gathering tools. To maintain
students' privacy, they are identified by number, for example [St. 2].

VP1. Reflection on learning in previous CS courses
The content of the Methods of Teaching CS course, the variety of
learning activities, and the tutoring process, all caused the
prospective CS teachers to reflect on their past learning of CS
concepts. For example:
• I was never taught how to begin a problem-solving process, what

the stages are. [St. 15]
• �You learn while you teach I am happy that I will be teaching

recursion because I know that I will further my understanding of
the concept. [St. 3]

A Reflective Practitioner’s Perspective on Computer Science . . . 99

VP2. Reflection on learning in the Method of Teaching CS
course

The prospective CS teachers reflected on the learning activities
facilitated in the Methods of Teaching CS course, on their own
performance while working on the activities, and on the teaching
skills they acquired during the "learning to be a teacher" process. For
example:
• The skills you taught us of looking at things from the learner's

perspective were very helpful indeed. [St. 12]
• Reading articles and writing summaries helped me learn how to

express myself clearly and in comprehensible way. [St. 10]

VP3. Reflection on teaching in the tutoring process
The prospective CS teachers referred to their performance as teachers
in the tutoring process. This included pre-session reflection, in-session
reflection, post-session reflection, and reflection on the overall
tutoring activity. For example:
• Pre-session reflection - while preparing the tutoring session: It

contributes to my awareness and understanding of what teaching
is. It highlights many new topics that should be paid attention to
while teaching. In other words, taking the learners' condition into
consideration and trying to predict the problems that will emerge
during the teaching process, etc. [St. 8]

• In-session reflection - during the tutoring session: Indeed, during
the lesson I noticed that I had digressed to a topic they had not
yet learned. Therefore, it is really important to distinguish
between topics and to consider previous knowledge. [St. 4]

• � �Post-session reflection on previous sessions with criticism or
satisfaction: If I could repeat the tutoring session, I would give her
additional time to think about the second part of the question and
I would not give her such an obvious clue. I should have given her
only a partial clue. [St. 7]; I do not regret that we began the
solution in a specific way and then switched to another way. I
think that it exposed him [the tutee] to different thinking processes
and to [the importance of] examining ideas. [St. 19]

100 Noa Ragonis and Orit Hazzan

• Reflection on the overall tutoring activity: In summary, I
� �recommend doing it yes, yes, yes otherwise we may not meet

anyone who needs to have something explained to him or her. [St.
9].

VP4. Reflection on the tutee's learning processes
During the tutoring sessions and after them, while writing the
feedback worksheet, the tutors addressed their diagnosis of the way
their tutee acquired the said knowledge. For example:
• Becoming familiar with the tutee's way of thinking and the tools

that may help him or her overcome cognitive obstacles: I was
constantly reflecting. I would say something and think what she
could be thinking, and I would hear what I was saying, and I
would think whether I could explain it differently. [St. 7]

• Becoming aware to the fact that what they had considered to be
understood by the tutee, was not: Even though we had talked
about that topic and the tutee claimed that he understood it, I
realize that since we did not practice it, the knowledge I had
imparted to the tutee did not become his own knowledge. [St. 17]

VP5. Reflection on the encouragement of tutees to reflect
during problem-solving processes

The tutors' expressed that their understanding of the advantages of
reflection in problem-solving process, led them to encourage their
tutees to reflect as well, as an additional tool to support and improve
their problem-solving processes. Specifically, they encouraged the
tutees to reflect on their understanding and on their performance
during problem-solving processes in the tutoring session itself. For
example,
• If she gives an incorrect solution, and I point that out to her and

she does not see it, I tell her to go over her solution and explain
what she did till she sees and understands herself, where her
mistakes were, and corrects them herself. [St. 1]

A Reflective Practitioner’s Perspective on Computer Science . . . 101

• In this session I felt, several times, that I have not achieved my
goals and I am not sure exactly how to do that [achieve my goals]
�. At the end of the session, I felt I needed feedback from the
tutee. He said that the session helped him understand the
material. My feeling was not so good: I am only at the beginning
of my way to effective teaching and there is still a lot of room for
improvement. [St. 4]

VP6. Reflection as a tool to envision the tutors' future as
CS teachers

Based on their reflective processes, the tutors also envisioned their
expectations as future school teachers. For example:
• Reflection is very important to my future work as a teacher.

Reflection enables to think critically about things I did and to
better apply the same task the next time around. [St. 19]

• When we finished working on the topic of functions, I really felt
that I could teach it well. [St. 7]

VP7. Reflection on the future pupils' understanding
The tutors addressed the toolbox they intend to use to understand
their future pupils' difficulties and how they will tailor different
approaches to different pupils' ways of thinking. For example: The
tutoring in general is something else - it is important. Now I will
enter the classroom and I will think that maybe the pupils think that
it [a specific CS topic] is [understood] � like this and that [another CS
topic] is [understood] � like that . [St. 7]

VP8. Meta reflection: Reflection on reflection processes
The prospective CS teachers also exhibited meta-cognitive skills while
reflecting on their own reflection. This can be seen as the first rung
of what Schön calls ladder of reflection (1987, p. 114). For example:
• I love to reflect after any activity of any kind, it really helps me

understand. [St. 10]

102 Noa Ragonis and Orit Hazzan

• After an unsuccessful attempt at explaining something, I took a
moment and thought about what it was that I was trying to
explain. I tried to recall previous explanations that I had given. I
actually used previous reflections, and chose an example that was
based on my previous experience. [St. 16]

The prospective CS teachers were also asked to address the
reflective processes they underwent during the course in the overall
evaluation questionnaire. Table 2 presents their responses with
respect the RP perspective they employed in the course (on a 1-7
scale: 1 - low, 7 - high). As can be seen, results numerically support
the appreciation the perspective CS teachers expressed towards
reflection processes as presented above.

Table 2. Contribution of reflection processes to DFT, Tutors (N=16*)

Question Average
(SD)

Dealing with the different aspects of reflective thinking
contributed to my learning.

5.88
(1.00)

I think that dealing with different aspects of reflective thinking
will contribute to my work in the future.

6.26
(0.95)

It is important to complete a reflective report after each
tutoring session.

6.39
(1.00)

* At the time of writing this paper, only six of the ten tutors had finished
their tutoring activity for the 2008-2009 academic year.

5 Summary
The working assumption of the research described in this paper is
that reflective processes are important as part of CS problem-solving
processes. Therefore, it is important to apply it in pre-service CS
training and to provide prospective CS teachers with tools to
encourage their future pupils to do so. This perspective is derived
from Schön's reflective practitioner framework for professional work

A Reflective Practitioner’s Perspective on Computer Science . . . 103

[10], [11]. Clearly, the RP perspective is suitable for teaching
processes in general; in our work, we applied it to CS teacher
preparation programs.

We presented the context in which the RP perspective was
introduced, both in the Methods of Teaching CS course and in the
tutoring model applied in the course. We showed advantages gained
from combining the theoretical aspect of RP with its significant
practicing in the course and in the tutoring activity. Our data
analysis indicates that the prospective CS teachers adopted the RP
perspective as part of their behavior, their learning, and their
tutoring. Moreover, the prospective teachers assimilated the RP point
of view into their professional development as future CS teachers.
Specifically, the prospective CS teachers highlighted eight viewpoints
of RP that address their own learning, their own teaching processes
and their learners' ways of thinking (tutees at this stage and pupils
in their future work at school).

As can be seen, in most cases the prospective CS teachers used
reflection as a tool to improve their teaching skills that in turn
supports their professional development as CS teachers. Indeed, this
is, in fact, the essence of the RP perspective. In this spirit, we
highlight our opinion that an RP perspective in CS education is
especially important due to its potential contribution to promoting
and improving problem-solving processes which are central elements
in CS.

References
1. Ericson, B., Armoni, M., Gal-Ezer, J., Seehorn, D., Stephenson, C.,

Trees, F., CSTA Teacher Certification Task Force: Ensuring Exemplary
Teaching in an Essential Discipline: Addressing the Crisis in Computer
Science Teacher Certification. New-York: ACM Press (2008)

2. Hazzan, O.: The reflective practitioner perspective in software engineering
education, The Journal of Systems and Software 63(3), pp. 161--171
(2002)

104 Noa Ragonis and Orit Hazzan

3. Khisty, C.J., Khisty, L.L.: Reflection in Problem Solving and Design.
Journal of Professional Issues in Engineering Education and Practice,
118(3), pp. 234--239 (1992)

4. �Kolczyk, E.: Algorithm Fundamental Concept in Preparing Informatics
Teachers. In R.T. Mittermeir & M.M. Syslo (eds.) Informatics Education
- Supporting Computational Thinking, Lecture Notes in Computer
Science 5090, ISSEP 2008 (pp. 265-271). Germany, Berlin/Heidelberg:
Springer (2008)

5. Putnam, R.T., Borko, H.: What do new views of knowledge and thinking
have to say about research on teacher learning? Educational Researcher,
29(1), 4--15 (2000)

6. Ragonis, N., Hazzan, O.: Integrating a Tutoring Model into the Training
of Prospective Computer Science Teachers. Journal of Computers in
Mathematics and Science Teaching. 28(3), pp. 309--339 (2009)

7. Ragonis, N., Hazzan, O.: A tutoring model for promoting the
pedagogical-disciplinary skills of prospective teachers. Mentoring &
Tutoring: Partnership in Learning, 17(1), pp. 50--65 (2009)

8. Ragonis, N., Hazzan, O.: Tutoring model for promoting teaching skills of
computer science prospective teachers. ACM SIGCSE 40(3), 276--280
(2008)

9. Ragonis, N., Hazzan, O.: Disciplinary-pedagogical teacher preparation for
pre-service computer science teachers: Rationale and implementation. In
R.T. Mittermeir & M.M. Syslo (eds.) Informatics Education - Supporting
Computational Thinking, Lecture Notes in Computer Science 5090,
ISSEP 2008, Germany, Berlin/Heidelberg: Springer, 253--264 (2008)

10. Schön, D.A.: The Reflective Practitioner. BasicBooks (1983)
11. Schön, D.A.: Educating the Reflective Practitioner: Towards a New

Design for Teaching and Learning in The Profession. San Francisco:
Jossey-Bass (1987)

12. Shulman, L.S.: Those who understand: knowledge growth in teaching. J.
Educational Teacher, 15(2), pp. 4--14 (1986)

13. Shulman, L.S.: Reconnecting foundations to the substance of teacher
education. Teachers College Record, 91(3), pp. 300--310 (1990)

14. Stephenson, C., Gal-Ezer, J., Haberman, B., Verno, A.: The new
educational imperative: Improving high school computer science
education. Final report of the CSTA Curriculum Improvement Task
Force (2005) http://csta.acm.org/Publications/White_Paper07_06.pdf
[2009, July]

A Reflective Practitioner’s Perspective on Computer Science . . . 105

15. Stroulia, E., Goel, A.K.: Learning problem-solving concepts by reflecting
on problem solving. In: Proceedings of the European Conference on
Machine Learning on Machine Learning (Catania, Italy). F. Bergadano
and L. De Raedt (eds.), 287--306. Springer-Verlag New York, Secaucus,
NJ. (1994)

16. Wilson, S.M., Berne, J.: Teacher learning and the acquisition of
professional knowledge. Review of Research in Education, 24, 173--209
(1999)

The Development of a Regional CS
Competition

Ralf Romeike, Andreas Schwill

Didaktik der Informatik
Universität Potsdam
August-Bebel-Str. 89

�14482 Potsdam Germany

{romeike,schwill}@cs.uni-potsdam.de

Abstract. Since 1998 our working group organizes the annual
regional computer science contest for students of secondary
schools in the Federal State of Brandenburg in Germany.
Several times the competition has been realigned and
conceptually changed. In this paper we report about reflections
on design and arrangement of the contest and give an account
of the respective experiences with different models.

1 Introduction
Promoting interest in CS and trying to attract pupils to choose CS
as a subject of study in university is a long-term goal of CS
educators. Competitions in CS are reported to be a good way to

�reach interested students by allowing them to experience the world
�of CS outside what they learn in school concurrently (cp. [1, 2]).

Since 1998 the didactics of computer science group at the
University of Potsdam organizes the annual regional computer
science contest for students of secondary schools (grades 9-13) in the
Federal State of Brandenburg in Germany1. Started in 1997 as an
open contest without any thematic specifications the contest in 1998,
in 2003 and again in 2006 has been realigned and conceptually

1 The contest is co-organized by BLIS, a small non-profit society that manages
regional contests in science on behalf of the ministry of education in Brandenburg.

The Development of a Regional CS Competition 107

changed and is now to a large extent based on closed problems. In
this paper we report about our reflections on design and arrangement
of a regional CS contest in general and give an account of the
respective experiences with different models of the Brandenburg
contest.

In part 2 we analyze factors that need to be taken into
consideration when establishing a contest in respect to existing
contests in the field in Germany. In chapters 3 to 5 experiences,
problems, actions and reflections of the three stages in the
development of the Brandenburg CS contest are described. In
Chapter 6 the overall experiences are summarized and discussed in
regard to the initially stated intentions.

2 Objectives for Establishing a Contest
When establishing a computer science contest one has to take into
account the objectives and the intended group of participants.
Generally there are two partially coupled parameters (Fig. 1):

The first parameter concerns the intended target group. One
may attempt a broad effect via the contest, i.e. motivate an as large
as possible number of students to pursue computer science. The goal
is to make the concerns of computer science accessible to a larger
public, and at the same time raise the general level from juveniles
with respect to computer science problems and their solutions. On
the other hand one may emphasize excellence by posing problems
which lie far beyond the abilities of an average computer science
student and in particular juveniles without access to regular
computer science lessons, and thus acquiring and selecting gifted
students.

The second parameter deals with the type of problems and tasks
used in the contest. Either one organizes an open contest with only
very general or even without guidelines concerning the subject of
contributions or one poses closed problems which are to be solved by
the participants within a certain framework and limited time.

108 Ralf Romeike and Andreas Schwill

Along with a recognizable and memorable name brand a profile
of the contest will develop that is defined for future participants by a
choice of subjects, problems and attractive prizes. General awareness
of the competition (publicity) will occur through competition
organization, award ceremony, and the presentation of contributions.

Fig. 1. Estimated market positions of major relevant contests in Germany

A clever tuning of these three elements, target group, type of
problems, name brand and their relationship towards creating a
memorable profile will enable a long term positioning of the contest

� �on the market generating permanent demand by participants.
�However, one has to keep in mind that several attractive market

�positions are already occupied by well-established contests in
Germany and, thus, are less suitable for the Brandenburg contest
(Fig. 1). We do not include the International Olympiads here since
they are not open and participation is by invitation only.

Based on these considerations in 1998 the second Brandenburg
CS contest was started and reorganized in the succeeding years due
to the experiences gained, which will be described below.

The Development of a Regional CS Competition 109

3 Stage 1: Introduction of the Brandenburg CS
Contest: 1998-2002
A major influence on the focus of the new competition originated
with the intended target group: In 1998 neither in the state of
Brandenburg nor in the rest of Germany was computer science an
established subject in school with respect to subject content and
organization. Therefore, the contest in Brandenburg should
predominantly strive to spread problems and ways of thinking in
computer science in the sense of a broad effect and help to
substantiate the subject of computer science in school. Excellence
was thought to be subordinate to the point when the subject of
computer science is stable enough and students can be expected to
have adequately acquired the many fundamentals in school necessary
for excellence.

So far no computer science contest has succeeded in acquiring a
reasonable amount of female participants. This issue was treated in
particular with supportive activities and by the selection of problems
to be solved. 20% female participation was thought to be a great
success and a feature of the contest that would guarantee national
attention. The Federal Contest of Computer Science attracted an
average of only 2-3% girls, slowly increasing to 5,5% in 2006, 6,5% in
2007 and to 10,5% in 2008 (cp. [3-5]).2

Problems: After deciding on a broad effect one is more or less
committed to closed problems. The reasons for this will be explained
and illustrated through experiences, the second author has gained as
organizer of the Federal Contest of Computer Science and which have
been reported in [6-8]. The first three contests had been announced
without any subject or problem specifications (#participants=113,
221 resp. 150 in the three contests). Thereafter the contest format
was changed to closed problems (#participants=700-1200 each year
in the first round) for the following two reasons: First, the contest
was active in a market segment that was already successfully

2 Interestingly, the German Beaver contest made it to attract tremendous 41% of
girls in 2008 [9].

110 Ralf Romeike and Andreas Schwill

� �occupied by the renowned contest Jugend forscht (young
researchers) and its math/CS branch. Second, the CS contest did not
have a sufficiently broad effect because an open contest does not

� �reduce as one might expect the access barrier but on the contrary
sets a hurdle. A project is more difficult for a potential participant if
he or she does not know the problem and thus has to start with a
problem-finding phase. Also, it is troublesome if a participant does
not know what is expected from him or her and if he or she has no

�idea about the quality of the competing contributions. Furthermore
this was an assertion for the first three contests that has been

�partially confirmed by the participants participants submitted
contributions which were already available in more or less polished
form and only had to be adapted according to the contest
regulations. With this advantage in development the qualitative level
of the contributions increases, but new participants usually cannot
catch up. The well-meaning approach to increasing the number of
participants through an open subject format seemed to fail.

After these considerations we had to specify the type of tasks
used for the contest. In order not to conflict with the well-established
Federal Contest of CS closed problems were rejected. We decided to
use one task each year that consists of a more or less open problem
or everyday-life situation. These had to be treated by participants
from two different perspectives (called A and B in the following) and
required different competencies while avoiding the above-mentioned
negative effects of open contests. With respect to Fig. 1 we did not

� �only occupy a single market position but covered a larger area
hoping to address more participants.

Perspective A consisted of analytic-descriptive work with
possibly detailed solutions and scenarios using a computer. It could
be managed without any special knowledge and in particular without
programming knowledge. The core computer science part was
between 30% and 50%. Perspective B required a detailed
implementation of a solution scenario developed in A or of different
aspects thereof. This task required detailed knowledge of computer

The Development of a Regional CS Competition 111

science, in particular programming experience, similar to other
contests.

A contest contribution consisted either of a solution solely to A
or to both perspectives. Contributions to just B were not possible.
What did we attempt by that? On one hand we expected that A also
addressed students who did not take computer science lessons but
who were interested in computer science and had a certain creativity.
It is known that girls belong to this group of students less interested

�in technical aspects (cp. [10-12]). Furthermore, computer science
�often recognized as the science of computers might now be

considered as a science that comprises more than just technical
expertise. On the other hand the proposed type of problems
motivates pair work where ideally a student interested in CS without
programming experience mainly deals with A while his/her
experienced partner mainly deals with B. The teamwork, typical for
computer science at large, which is potentially involved with this
approach, would differentiate this contest from other approaches.

Unfortunately, most of the objectives mentioned earlier have not
been achieved. Between 1998 and 2002 the contests dealt with the
following subjects from which an arbitrary problem had to be
addressed:

1998: Computer science and language
1999: Computer science and history / the history of computer

science
2000: Computer science and traffic
2001: Computer science and criminality
2002: Computer science and arts

�The title of the 2001 winners contribution gives an idea about
the kind of contributions that were submitted: A web-based file of
criminals.

While sometimes up to 100 students participated, the number of
contributions was always less or equal to 5, though some were very
extensive. Furthermore, only a small number of schools and almost
always the same ones were creative enough to find a problem for the
given subject and to organize a project in order to contribute to the

112 Ralf Romeike and Andreas Schwill

contest. Participation was primarily based on the interest and
activity of the teachers.

After some detailed discussion the contest was realigned in 2003.

4 Stage 2: Realignment of the Contest: 2003-2005
�Until recently it took a teacher s initiative to form and organize a

project in school in order to participate. Now students should gain
the opportunity to participate directly and without a major influence
from the teacher. We changed this because there was feedback from
students that showed that students wished to participate when their
teachers did not manage to organize a respective project or find
enough group members. Accordingly we expected a larger response to

�our call for participation after this change. The teacher s influence
was now limited to selecting up to two students from his or her
school and nominating them for participation in the contest. This
procedure, looking superfluous at first sight, ensures that students
can approach teachers who might not follow announcements,

� �registration deadlines etc. The contestants, as quasi official
delegates, now can draw the attention of teachers, the school, and to
the subject of CS itself.

Furthermore, we almost completely abandoned the project-
oriented approach where projects had to be defined and accomplished
over a longer period of time during lessons. Therefore the contest was
organized on a single day at the University of Potsdam and was
divided into three sections where we integrated experiences from the
final round of the Federal Contest of CS. First, students had to pass
a 15 minute oral examination on computer science problems and
ways of thinking. Secondly, students worked on a larger relatively
open problem in groups of 4-5 for about 3 hours while being observed
by a judge. Here they had to show how to apply different CS
techniques and work efficiently in a team. A group consisted of
students of almost equal age. The contest day finished with a plenary
session where all students had to present their results. The experts of
the jury monitored all discussions and solution strategies of

The Development of a Regional CS Competition 113

participants and evaluated individual and group performances as well
as their abilities to work in a team.

In the third year we also added a multiple-choice-test between
the first and the second part. Due to the different competencies that
are required in the examination procedure we felt much more
confident of finding the best students.

We implemented this approach for the contest in 2003-2005 and
selected the following group tasks:

2003: Robot soccer
2004: E-Commerce for services
2005: Ubiquitous computing

We received about 30% more applications than places were available
(32-40 participants, equals 8-10 groups).

The students enjoyed the group work very much, which gave
them the opportunity to deeply discuss CS problems with their peers;
an activity possibly missing from their normal school lessons.

From feedback of the participants we knew that while the first
theme was very motivating the latter two were recognized as
somewhat tedious. All in all the solutions presented by the teams
were considered by the jury as often superficial, less substantiated
and uncreative. This was probably due to the lack of profound CS
knowledge and too much time spent concretizing the open problems.

Accordingly, we modified the contest in 2006 again in order to
overcome these weaknesses.

5 Stage 3: Fine Tuning of the Contest: 2006-today
As a reaction to the aforementioned issues we replaced the more
general open theme for the group work by a small set of 3-5 well-
defined (artificial) problems that can be solved by computer science
methods but often have no obvious relation to computer science. One
of the problems is usually a bit easier than the others and serves as a
warm-up. All these problems help to reduce the initial phase of
problem analysis and understanding which were necessary for the
open problems used earlier. We select these problems from problem

114 Ralf Romeike and Andreas Schwill

sections of books and journals; for some problems we know the
solution in advance, for some we do not. The danger that some
students incidentally are familiar with a problem we consider as very
small.

Here is an example of a problem we used in the contest 2009:

Diagnosis of an infectious disease: Among p persons an infectious disease
circulates. In order to separate the sick from the healthy persons we take
blood samples from all p persons and test them for viruses. Obviously, by
analysis of each single blood sample we can find out whether a person is ill
or healthy. This requires p lengthy analyses.
We wish to accelerate this procedure. Instead of analyzing each single sample
we join parts of several samples and analyze the mix. This analysis gives the
information whether there is an ill person among the tested group or whether
all persons of the group are healthy. By a suitable choice of groups we want
to need less than p analyses. Is that possible or not?

6 Experiences, Reflections and Discussion
Participants: The participants were between grades 9 (around age 14)
and 13 (around age 19). The number of female participants varied
between 10% and 15%, which is a relatively high share, compared to
other contests.

Problems and group work: Working in a group seems very motivating
and interesting for the students. They learn from each other and find
out what they know and do not know. Furthermore, they are
introduced to computer science subjects previously not encountered.
Some participants who have begun to study computer science report
that they are confronted with similar problems during their studies
they have faced during the contest. Some students profit from their
competition experiences, preparing for the contests in the following
years by closing gaps in their knowledge, participating several times
and improving to gain higher positions.

The Development of a Regional CS Competition 115

Funding: The budget of the contest is approximately 1000 EUR
funded by the Brandenburg Ministry of Education and covering all
expenses. The awards for the best students (around 10 of the 30-40)
are between 50 EUR for the first places and 20 EUR for the third
places in addition to some computer science books donated by a local
publisher. Although the financial prize sometimes barely covers the
traveling expenses for Potsdam, it does not appear that students are
making their decisions to participate dependent on the prize money.
The fascinating event, meeting people with the same interests, as well
as the possible honor of receiving a prize seems incentive enough.
Long-term impact and broad effect: Since the number of participants
is limited to 32-40 the direct impact of the contest is assumed to be
relatively small. However, we count more on the indirect effect:
- Around 20 schools are involved in the contest by delegating their

best students to the contest. At least as many teachers are
involved with the contest, some even train their students
beforehand.

- Winners and their schools are frequently mentioned in local
newspapers thus improving their reputations3. The subject of
computer science is enhanced and attracts more attention.

- The best students get a (hopefully) positive impression of the
University of Potsdam and its computer science department,
which might attract them to study here. In fact we occasionally
get feedback from students studying CS, however, we do not have
exact figures for how many students study CS in Potsdam or
elsewhere as a result of participation in the contest.

All in all we are fine with the current version of the contest and are
looking forward to the future.

References
1. �Dagiene, V.: Information Technology Contests Introduction to

Computer Science in an Attractive Way. Informatics in Education, 5 (1),
�37 46 (2006).

3 � �The motivational benefit of such fame is also reported by Pohl [13].

116 Ralf Romeike and Andreas Schwill

2. Pohl., W.: Computer Science Contests in Germany. Olympiads in
Informatics (2007) Vol. 1, 141-148.

3. Statistics of the 25th Federal Contest of Computer Science Germany:
http://bwinf.de/fileadmin/templates/bwinf/presse/
Statistik_25._BWINF.pdf

4. Statistics of the 26th Federal Contest of Computer Science Germany:
http://bwinf.de/fileadmin/templates/bwinf/presse/
Statistik_26._BWINF.pdf

5. Statistics of the 27th Federal Contest of Computer Science Germany:
http://bwinf.de/fileadmin/templates/bwinf/presse/
Statistik_27._BWINF_Runde_1.pdf

6. Claus, V., Schwill, A.: Informatikkenntnisse von Jugendlichen, untersucht
am Beispiel der drei Bundeswettbewerbe Informatik. Informatik-
Spektrum 6 (1986) 270-279, Springer.

7. Claus, V., Schwill, A.: Die Wechselwirkungen zwischen Problemstellung,
Programmier-sprache und verwendeten Informatikmethoden am Beispiel
der beiden Bundeswettbewerbe in Informatik. Informatik-Fachberichte
Bd. 90 (1984) 87-91, Springer-Verlag.

8. Claus, V., Schwill, A.: Evaluating and improving informatic education in
secondary schools by means of programming contests. Proc. of the 4th
World Conference on Computers in Education (1985) 25-30, North-
Holland Publishing Company.

9. http://www.informatik-biber.de/Archiv/informatik-biber-2008
10. Roberts, E. S., Kassianidou, M. und Irani, L. (2002): Encouraging

Women in Computer Science. SIGCSE Bulletin., 34, 84-88.
11. American Association of University Women (2000): Tech-Savvy:

Educating Girls in the New Computer Age. American Association of
University Women, Washington, DC.

12. Guzdial, M. und Soloway, E. (2002): Teaching the Nintendo generation
to program. Commun.ACM, 45 (4), 17-21.

13. Pohl, W.: Computer Science Contests for Secondary School Students:
Approaches to Classification. Informatics in Education (2006) Vol. 5, No.
1, 125-132.

Modern Web Development in Schools

Lothar Schäfer, Hans-Stefan Siller and Florian Strasser

University of Salzburg
Department of Mathematics and Informatics Education

Hellbrunnerstr. 34
5020 Salzburg

lothar.schaefer@sbg.ac.at
hans-stefan.siller@sbg.ac.at
florian.strasser@sbg.ac.at

http://www.uni-salzburg.at/

Abstract. Modern web development is nearly untaught in
schools, even though a paradigm shift has happened over the
last years which made the knowledge of web programming and
programming languages unnecessary. We picked up this trend
and produced an online tutorial, in which we demonstrate the
development of a website with the aid of TYPOlight, a Content
Management System free of charge. To ensure the use of our
tutorial in class, we also have prepared a USB flash drive, con-
taining an Ubuntu Linux live operating system and an XAMPP
web server. This system is flexible and can be applied to a num-
ber of environments. The students’ task is to develop a website
modelled on the one in the tutorial and thereby acquire skills in
the use of the TYPOlight CMS on their own. By using differ-
ent forms of representations throughout the tutorial and due to
TYPOlight’s usability this task can be easily accomplished.

1 Web Development Meets New Ideas

As today’s websites are getting more and more complex, Web Content
Management Systems (CMS) are quickly becoming essential tools for
personal and professional web design. They provide features for quick
and easy creation, administration and maintenance of websites from
remote locations using simple and intuitive user interfaces that do not

118 Lothar Schäfer, Hans-Stefan Siller and Florian Strasser

require much knowledge of web programming. In order to teach In-
formatics in a modern and relevant manner it is necessary to take this
recent trend into account.

Of course it is not possible to follow every trend in school teach-
ing, but in this case we talk about a paradigm shift that must not
be ignored. Up to now, the creation of websites is introduced with
the concept of HTML - mostly in combination with Cascading Style
Sheets (CSS) - and a development environment - commonly an editor -
or by commercial software, e.g. Dreamweaver. Knowledge of the syn-
tax of HTML and CSS is necessary, but is now made less important by
Content Management Systems with focus on application competence.
Since TYPOlight [10] is a free Content Management System that in-
corporates many useful features while being very user friendly, it is well
suited for teaching the basic paradigms of complex web development.

We want to introduce a flexible new method of teaching Content
Management Systems that takes into account the complexity of the
subject matter and computer infrastructure in schools or educational
institutions. In order to achieve these goals, a tutorial on TYPOlight
(Fig. 1) that was built using only TYPOlight is provided. (Note: This
tutorial has only been developed in German so far. Hence the following
pictures are only available with a German text!)

The main purpose of this approach is to allow easy access to the
tutorial as a website and to showcase the power of TYPOlight, motivat-
ing students to learn how to use it for their own projects. The tutorial
uses different forms of representation and guides students through the
process of building a new website from scratch by modelling it after
the tutorial itself.

Using workstation computers to work with applications built mainly
for server environments proves difficult because a variety of installa-
tions and configurations are required before students can start with
their tasks. To eliminate this extra work, the tutorial is stored on a
USB flash drive that contains its own bootable Linux operating system
with all necessary server software and configurations already in place.
This way all students get their own preconfigured environment and the
teacher does not have to worry about problems that may arise during
setting up a working web server or database on several computers. In
addition to this, students are enabled to take their current work with
them and use it on any computer they wish.

Modern Web Development in Schools 119

Fig. 1: Starting point of the tutorial

Of course, not all workstation computers can allow all users to boot
from their own flash drive, because this poses a serious security risk
regardless of any safety precautions in the host operating system. In
order to make our concept work in this scenario, the flash drive also
contains applications for use in Windows environments that operate in
a manner similar to their Linux counterparts. This way every student
should quickly end up with a working environment for viewing the
tutorial and creating his or her own website.

This concept works for educating adults or teachers in much the
same way as it does for schools - especially by aiming at the secondary
level - because the only infrastructure required is a computer room,
provided in most educational facilities nowadays. Participants can also
take the flash drive with them and don’t have to worry about losing
their work.

The most obvious benefit of our approach here is the high level of
portability of the described system. By using techniques such as com-
puter independent operating systems and portable servers students can

120 Lothar Schäfer, Hans-Stefan Siller and Florian Strasser

also get a grasp of some possible future trends in informatics including
thin clients and cloud computing. When using the provided tutorial in
different locations and on different operating systems it soon becomes
apparent that really the only thing required for it to work is processing
power.

2 Technical Aspects

The USB flash drive contains one bootable partition with a Linux op-
erating system that is ready for use once started. The other partition
can be read by any standard Windows operating system and contains
a folder with a preconfigured XAMPP web server that can be started
as a service on the host machine. The downside of this method is that
not every computer will have the exact same condition to start from,
since some applications like web browsers may differ from machine to
machine. Nevertheless, both possibilities feature equal functionality
and user friendliness. The decision to use one setup or the other will
mainly be influenced by the existing infrastructure. This feature set
(bootable USB flash drive plus XAMPP web server) opens up many
different ways of teaching TYPOlight in a wide variety of setups.

The tutorial on TYPOlight is the core component in teaching Web
Content Management Systems as it tells students how to create a new
website from scratch following an easy step-by-step instruction. For
this purpose the running web server has two directories; one contains
the tutorial itself and the other offers a fresh TYPOlight install. Since
both directories are served publically by the web server, the teacher can
watch the progress of any individual student from a central location
and also provide help if needed. The teacher only needs to know the IP
address of the respective student’s server to use a web browser and take
a look at the content of the students’ website. With the appropriate
website settings, it is even possible to develop the website in teacher -
student teamwork.

2.1 Cyclic Processes

Due to TYPOlight’s structure, cyclic processes may occur during the
development of the website. Objects are generated and afterwards
applied to already existing objects which are thereby refined. During

Modern Web Development in Schools 121

the preparation of the tutorial our first concern was to avoid such
processes and find the most cycle free development process. Therefore,
we first create for example all necessary modules before applying them
onto the website’s layout. This procedure is not mandatory and cannot
always be implemented in practice.

What might look like a problem at first actually is the solution
for dealing with a complex process like the development of a Website.
The mentioned cycles make it possible for the developer to forget some
aspect in his building process or just concentrate on another aspect
and then finish his work afterwards with no problem at all.

The following illustrations (Fig. 2) show one of those cycles. At
first a new layout is generated (1), only to be immediately edited (2).
Within the layout modules are responsible for the site’s content (3).
Now a new module is created (4), edited (5) and inserted into the
existing layout (6).

This cyclic procedure helps to steadily approach the solution and
gives the user the possibility to add or change content whenever nec-
essary. For this reason TYPOlight was our choice. First, it supports
later additions or changes and second, it represents a stable and nearly
tough training environment. You can make the students feel, that
whatever step they take, it will in an iterative way always lead to the
desired solution, i. e. the finished website. In addition to the introduc-
tion to modern web development, the teacher can also point out the
strengths and advantages of iterative and recursive processes in specific
examples.

2.2 Separation of Structure, Content and Layout

Another interesting aspect in the use of the TYPOlight CMS is the
strict separation of structure, content and layout. Starting out by gen-
erating the websites structure, content and layout are not from impor-
tance at that time. They have to be dealt with later. So the students
can easily see the advancement of separating those three fundamental
aspects. If they already have some experience with HTML, this point
can be further emphasized by the teacher, for instance by creating and
displaying different layouts for the same webpage, comparing this with
a conventional HTML approach.

122 Lothar Schäfer, Hans-Stefan Siller and Florian Strasser

Fig. 2: Graphical illustration of cyclic process while working with the
tutorial

Modern Web Development in Schools 123

The separation is also important if someone wants to test the pos-
sibilities of this CMS in advanced situations. Since the content is con-
trolled with templates, it’s possible to change the content without any
knowledge of the actual layout, displaying the strengths of abstraction
layers.

3 Using the Tutorial in Education

As already mentioned, TYPOlight is a Content Management System
managed with a user interface, liberating the web developer from the
well-known programming tasks. Therefore, the competencies in de-
veloping a website have shifted from programming and developing to
using a single application and in this way have become accessible to a
wider audience. Students using TYPOlight hence automatically take
on the role of an application user. This, however, does not eliminate
the need for knowledge of basic HTML or CSS syntax, as these skills
are still required at some points in the course of teaching the CMS.

The idea of our teaching sequences is that the students acquire most
of the new skills with the help of the tutorial while the teacher’s role
is that of coaching (cf. [3]). Students are construing their knowledg
themselves as Papert [6] mentions it. Sutherland [8] shows the success
of coaching in education through an empirical study. In our opinion,
two teaching sequences result from the students’ task to create a web-
site. Each of them mainly focuses on the acquisition of responsibilities
in using the system. At the same time topics that are not commonly
discussed in class can be introduced in a practical way.

In the first teaching sequence the given USB flash drive can be
used to boot the Ubuntu Linux operating system with a running web
server. Alternatively, the XAMPP server located on the Windows par-
tition of the USB flash drive can be started. Afterwards, the installed
web browser Firefox is opened and the TYPOlight tutorial as well as
the TYPOlight training environment are started by typing in the re-
spective addresses or via preloaded bookmarks. Now the students are
able to work in the familiar environment of a web browser, while in
the first case the Ubuntu Linux operating system (possibly unfamiliar
to the students) is running in the background. This is an excellent op-

124 Lothar Schäfer, Hans-Stefan Siller and Florian Strasser

portunity to reduce hindrances in using other operating systems than
Windows.

The second teaching sequence does not begin with the use of TY-
POlight itself, but with the setup of an environment for the use of
TYPOlight. In this case it is possible to work with the Windows oper-
ating system as well as with Ubuntu Linux. During the setup routine
the concepts of web servers and database servers can be discussed and
demonstrated in class. The XAMPP server in use is exemplarily de-
signed and deployable for that purpose. After having completed the
setup in only a few steps, this teaching sequence is continued in the
same manner as the first one.

At this point the teacher’s role is that of a coach. The students
mainly have to work with the tutorial autonomously - as mentioned in
[2] - whereas the teacher only intervenes in case of problems or more
detailed questions, as shown in [7]. This can be done either at the
student’s computer or via network access to the website’s backend.

The tutorial can also be thought of as a starting point for further
project-based teaching as quoted in [1], [2]. All basic skills and core
competencies needed for developing an own website on any chosen topic
will be acquired with the help of the tutorial.

3.1 Skills and concepts taught

Many skills, techniques and concepts can be learned by this method of
teaching Web development in either direct or indirect manner, following
the idea of the spiral principle. At first, students get a good feeling of
abstraction layers in software as they learn to build websites without
using any low level markup or programming languages. It seems as
if the CMS could take care of all the hard work and leave only the
creative and productive part to the designer. The impact of creative
intelligence is enhanced (cf. [4], [9]).

But the students soon learn that customization beyond a certain
point still requires knowledge of HTML syntax or even PHP code and
database queries if they want to create new modules for TYPOlight to
better fit their needs. Furthermore, the modular nature of the CMS
with its strict separation of structure and content teaches some of the
ideas of object orientation.

Modern Web Development in Schools 125

In the end, students will realize that tools such as TYPOlight can
make some work unnecessary through abstraction while they still re-
quire a thorough understanding of the underlying concepts to be able
to use them in a meaningful way.

3.2 Didactic Concept

The aim of maximum sustainability is reached through different ap-
proaches. At first, the entire process of developing a website is cap-
tured and split into small and consecutive sections. This enables the
students to stop working at any time and to continue whenever they
want to. The structure of this segmentation is available via the nav-
igation menu. It is also possible to leaf through the tutorial like a
book.

Furthermore, different forms of representation are applied through-
out the entire tutorial. Nearly every section begins with a screencast
including audio, explaining the next steps in the development process.
Subsequently, the content of each video is displayed in shorthand text
with the appropriate screenshots. This is useful if the students have
forgotten some aspects or were not able to follow the screencast, be-
cause this way they can easily catch up on the content with the help of
screenshots. The explanatory notes are kept short and simple on pur-
pose in order to not disencourage the students by long text passages.
Each section is concluded with questions and tasks. On the one hand
they contain theoretical aspects on the other hand they provide tasks
to work beyond the tutorial’s extent and encourage to try out more
complex functionality included in the Content Management System.

This approach not only provides a clear structure, it also follows
the E-I-S principle [5] of holistic learning. The iconic level is addressed
with the help of screencasts and screenshots. The explanatory notes
appeal to the symbolic level, whereas the enactive level is covered by
building the actual website.

Moreover, the iterative processes earlier mentioned represent a dif-
ferent and essential advantage. The sequence of necessary operations
during the development process is often repeated, leading to a natural
deepening of the acquired skills and thus strengthening the application
competence.

126 Lothar Schäfer, Hans-Stefan Siller and Florian Strasser

4 Conclusion

Our tutorial gives the students an insight into modern web develop-
ment. At this point it must be emphasized that this insight is strongly
practice orientated and offers the students concrete and realistic job
opportunities. The acquired knowledge and some motivation make it
possible to create complex websites for clients thus entering the pro-
fessional world.

Modern web development has overall become more complex over the
years, but is at the same time easier for the user, since he needs less
knowledge of web programming. If this trend continues, this knowledge
will be even less required and a website will be developed and designed
only by using a Content Management System.

At the same time the students get the chance of experiencing TY-
POlight on their own, the teachers role becomes that of a coach, guiding
the students in their learning process.

References

1. BM UKK: Grundsatzerlass zum Projektunterricht - Wiederverlaut-
barung der aktualisierten Fassung (engl.: Acceptilation on projects
in education). Wien: Ministry of Education, 2001

2. BM UKK: Lehrplan Informatik AHS-Oberstufe. (engl: Syllabus
for Computer Science for secondary schools). Wien: Ministry of
Education, 2004

3. Collins, A.; Brown, J.S.; Newman, S.E.: Cognitive Apprentice-
ship: Teaching the crafts of reading, writing, and mathematics. In:
Resnick, L.B. (Ed.): Knowing, learning, and instruction. Hillsdale,
NJ: Erlbaum, 453-494

4. Funke, J.: Psychologie der Kreativitaet. In: Holm-Hadulla, R.M.
(Ed.): Kreativitaet. Berlin: Springer, 2000, 283-300

5. Kautschitsch, H.: ”Erfolgreiche” Bilder durch neue Medien (engl:
Successfull pictures through New Media). In: Schriftenreihe der
Mathematik. Band 23. Trends und Perspektiven (engl.: Scientific
series for Mathematics. Vol. 23. Trends and Perspectives). Wien:
Verlag Hoelder-Pichler-Tempsky, 1996, 191-197

Modern Web Development in Schools 127

6. Papert, S.: Mindstorms: Children, Computers and powerful ideas.
All about LOGO., BasicBooks, A Division of HarperCollins Pub-
lishers, Inc.: New York, 1993

7. Siller, H.-St.; Maass, J.: Fussball EM mit Sportwetten (engl.: Foot-
ball championship and Sports betting). In: Brinkmann, A.; Olden-
burg, R. (Eds.): Materialien fuer einen realitaetsbezogenen Mathe-
matikunterricht. Bd. 14 (engl.: Materials for real-life Mathematics
in education. Vol. 14). Hildesheim: Franzbecker, 2009, 95-113

8. Sutherland, L.: Developing problem solving expertise: The impact
of instruction in a question analysis strategy. In: Learning and
Instruction., 12, 2002, 155-187

9. Wirth, J.; Klieme, E.: Computer-based assessment of problem
solving competence. In: Assessment in Education., 10 (3), 2003,
329-345

10. http://www.typolight.org/ (last access: 20.08.2009)

128 Lothar Schäfer, Hans-Stefan Siller and Florian Strasser

Author Index

Antonitsch, Peter, 16

Blonskis, Jonas, 32

Dagienė, Valentina, 32

Grgurina, Nataša, 48
Grossmann, Andrea, 16

Hazzan, Orit, 89

Kurilovas, Eugenijus, 52

Micheuz, Peter, 16, 73

Peter Antonitsch, 1

Ragonis, Noa, 89
Romeike, Ralf, 106

Schäfer, Lothar, 117
Schwill, Andreas, 106
Serikoviene, Silvija, 52
Siller, Hans-Stefan, 117
Strasser, Florian, 117

Tijsma, Lars, 48

