
Teaching Programming, Not Programs
Computer Science, Cornell

Friday, January 15, 2010

Teaching Programming, Not Programs
Computer Science, Cornell

Friday, January 15, 2010

Teaching Programming, Not Programs
Computer Science, Cornell

Past 5-6 years:

• Teach computing using Java

• 130-200 students each semester

• Mostly Engineering, but also Arts & Sciences,
 Human Ecol, Arch, Agr & Life Sciences

• 1/2 of them have never programmed before

• 2 50-minute lectures per week
• 1 50-minute closed, required lab per week

Friday, January 15, 2010

Past history of research and education on the
formal development of programs.

1970’s, 1980’s 1990’s ...

Starting my 88th semester of teaching

Friday, January 15, 2010

Past history of research and education on the
formal development of programs.

1970’s, 1980’s 1990’s ...

Starting my 88th semester of teaching

Teach program design, program methodology:
strategies, principles for developing programs

Friday, January 15, 2010

No experience teaching secondary school

Past history of research and education on the
formal development of programs.

1970’s, 1980’s 1990’s ...

Starting my 88th semester of teaching

Teach program design, program methodology:
strategies, principles for developing programs

Friday, January 15, 2010

Make this talk interesting whether you are teaching
Java or C++ (ugh!) or Python or Ruby or whatever.

What I propose to do

Friday, January 15, 2010

Make this talk interesting whether you are teaching
Java or C++ (ugh!) or Python or Ruby or whatever.

What I propose to do

1. Discuss some pedagogical principles

2. Talk about how I teach programming (not programs)
 Get across concepts simply
 Teach methodology

3. Discuss other aspects —recursion before loops, use
of loop invariants, ...

Friday, January 15, 2010

Goal: Reveal Programming Process and Teach Skills

Michael Caspersen discusses this in his PhD thesis, done at Aarhus,
June 2007. Based on cognitive science, educational psychology,
cognitive skill acquisition, research in programming methodology.

Mathias Felleissen has had great success using his “design recipe”
and TeachScheme!. Has reached out to secondary education.

Friday, January 15, 2010

Goal: Reveal Programming Process and Teach Skills

Michael Caspersen discusses this in his PhD thesis, done at Aarhus,
June 2007. Based on cognitive science, educational psychology,
cognitive skill acquisition, research in programming methodology.

Mathias Felleissen has had great success using his “design recipe”
and TeachScheme!. Has reached out to secondary education.

identify forms of data
write examples of these forms
identify the desired black-box behavior
write examples (test cases) of behavior
derive template for program from data
use template to complete program logic

Friday, January 15, 2010

Present material at the appropriate level of abstraction

Need a good model of the variable.
Need a good model of execution of proc/function calls.
Need a good model of classes and objects.

None of these should be in terms of
the computer and memory.

Friday, January 15, 2010

Present concepts at appropriate level of abstraction

6

The computer itself is not the right level of abstraction for beginners. Give them
a model they can understand without mentioning computer and memory.

Friday, January 15, 2010

Present concepts at appropriate level of abstraction

6

The computer itself is not the right level of abstraction for beginners. Give them
a model they can understand without mentioning computer and memory.

The computer must always know the type of value to be stored in
the memory location associated with a variable.
An object reference variable actually stores the address where the
object is stored in memory.
An object has its own unique identity, which distinguishes it from
all other objects in the computer’s memory …. An object’s
identity is handled behind the scenes by the Java virtual machine
and should not be confused with the variables that might refer to
that object.

(1) gives impression that only computers can execute programs.
(2) confuses people who have little idea of memory, virtual

machines, and how computers work.

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction

7

Algol 60 language definition does not mention the computer.

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction

7

Algol 60 language definition does not mention the computer.

“The purpose of the algorithmic language is to describe
computational processes. …

A variable is a designation given to a single value.

Assignment statements serve for assigning the value of an expression
to a variable …. The process will … be understood to take place in
three steps as follows:

4.2.3.1. Any subscript expressions occurring in the left part variable
are evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.

4.2.3.3. The value of the expression is assigned to the left part
variable, with any subscript expressions having values as evaluated
in step 4.2.3.1.

Friday, January 15, 2010

http://www.masswerk.at/algol60/report.htm#4_2_3_1
http://www.masswerk.at/algol60/report.htm#4_2_3_1

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Problem: students don’t know how to execute the assignment statement.

x 5

x= x+2;

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Problem: students don’t know how to execute the assignment statement.

Variable:
1. A name associated with a value.
2. A named box with a value inside it.

x 5

x= x+2;

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Problem: students don’t know how to execute the assignment statement.

Variable:
1. A name associated with a value.
2. A named box with a value inside it.

x 5

x= x+2;

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

x 7

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Problem: students don’t know how to execute the assignment statement.

Variable:
1. A name associated with a value.
2. A named box with a value inside it.

x 5

x= x+2;

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

x 7
Don’t draw variable again!

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Problem: students don’t know how to execute the assignment statement.

Variable:
1. A name associated with a value.
2. A named box with a value inside it.

x 5

x= x+2;

To execute the assignment:
(1) evaluate the expression and
(2) store its value in the variable.

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

x 7
Don’t draw variable again!

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Problem: students don’t know how to execute the assignment statement.

Variable:
1. A name associated with a value.
2. A named box with a value inside it.

x 5

x= x+2;

To execute the assignment:
(1) evaluate the expression and
(2) store its value in the variable.

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

 7

x 7
Don’t draw variable again!

Friday, January 15, 2010

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

8

Problem: students don’t know how to execute the assignment statement.

Variable:
1. A name associated with a value.
2. A named box with a value inside it.

x 5

x= x+2;

To execute the assignment:
(1) evaluate the expression and
(2) store its value in the variable.

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

 7

x 7
Don’t draw variable again!

Friday, January 15, 2010

9

To execute the assignment:
(1) evaluate the expression and
(2) store its value in the variable.

Computer: wrong level of abstraction for beginners. Give them a
model they can understand —don’t mention computer and memory.

To evaluate new C(args)
(1) create an object of class C
(2) execute constructor call C(args)
(3) yield as the value of the expression

the “name” of the new object

To execute procedure call p(args)
(1) draw a frame for the call
(2) assign arg values to pars
(3) execute method body
(4) erase the frame for the call

Present concepts at the appropriate level of abstraction
—and provide precise, clear, definitions

Friday, January 15, 2010

Name the things you want to talk about

10

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;
a1

a2

a1

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;
a1

a2

a1

The names that can be placed on the tab of
an object form a type. Values of this type can
be placed in a variable of the associated class.

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;
a1

a2

a1

Expression x evaluates to a1

The names that can be placed on the tab of
an object form a type. Values of this type can
be placed in a variable of the associated class.

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;
a1

a2

a1

 a1
Expression x evaluates to a1

The names that can be placed on the tab of
an object form a type. Values of this type can
be placed in a variable of the associated class.

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;
a1

a2

a1

 a1
Expression x evaluates to a1

The names that can be placed on the tab of
an object form a type. Values of this type can
be placed in a variable of the associated class.

An object has its own unique identity, which distinguishes it from all
other objects in the computer’s memory …. An object’s identity is
handled behind the scenes by the Java virtual machine and should not be
confused with the variables that might refer to that object.

Friday, January 15, 2010

Name the things you want to talk about

10

Pointer-reference

y

x

an object

y= x;
a1

a2

a1

 a1
Expression x evaluates to a1

The names that can be placed on the tab of
an object form a type. Values of this type can
be placed in a variable of the associated class.

An object has its own unique identity, which distinguishes it from all
other objects in the computer’s memory …. An object’s identity is
handled behind the scenes by the Java virtual machine and should not be
confused with the variables that might refer to that object.

Friday, January 15, 2010

Order material to minimize introduction of
terms/topics without explanation

—as much as possible, define a term when first used

Friday, January 15, 2010

Order material to minimize introduction of
terms/topics without explanation

—as much as possible, define a term when first used

/** Print "Hello World" */
public class FirstClass {
 public static void main(String[] pars) {
	
 System.out.println("Hello World);
 }
}

Almost every line of a Java program
deals with a class or object!

So the language Java dictates an OO-first
approach to teaching programming

Friday, January 15, 2010

Model for objects and classes
A class is a file drawer. All the
manila folders in it have the
same kind of information

Manilla folder: an object or instance of the class

Friday, January 15, 2010

Model for objects and classes
A class is a file drawer. All the
manila folders in it have the
same kind of information

Manilla folder: an object or instance of the class

C1!

Patient!
name! B. Clinton!

address! New York!

owes! $250.00!

getName() { ... }
deposit(double d) { ...}

Friday, January 15, 2010

Model for objects and classes
A class is a file drawer. All the
manila folders in it have the
same kind of information

Manilla folder: an object or instance of the class

C1!

Patient!
name! B. Clinton!

address! New York!

owes! $250.00!

getName() { ... }
deposit(double d) { ...}

Whoever creates the folder
gets to choose the name on

the tab. Must be unique.

Friday, January 15, 2010

Model for objects and classes
A class is a file drawer. All the
manila folders in it have the
same kind of information

Manilla folder: an object or instance of the class

C1!

Patient!
name! B. Clinton!

address! New York!

owes! $250.00!

getName() { ... }
deposit(double d) { ...}

Whoever creates the folder
gets to choose the name on

the tab. Must be unique.

The names on folders of class Patient form a
type of value.
Importance cannot be overestimated.
Allows us to eliminate terms like pointer
and reference and provide a single
consistent view of assignment.

Friday, January 15, 2010

Model for objects and classes

Manilla folder: an object or instance of the class

a0!

show() hide()!

setTitle(String) getTitle()!

getHeight() getWidth()!

setSize(int, int)!

getX() getY() setLocation(int, int)!

isResizable() setResizable(boolean)!

javax.swing.JFrame!

First class definition:
subclass of JFrame.
Reasons:
1. Inheritance comes
naturally, right in the
beginning.
2. Never have to show
something that can’t be
explained.
3. See right away how
things are reused.

Friday, January 15, 2010

Model for objects and classes

Manilla folder: an object or instance of the class

a0!

show() hide()!

setTitle(String) getTitle()!

getHeight() getWidth()!

setSize(int, int)!

getX() getY() setLocation(int, int)!

isResizable() setResizable(boolean)!

javax.swing.JFrame!

SquareJFrame!
area() {…}!

setHeightToWidth() { …}!

First class definition:
subclass of JFrame.
Reasons:
1. Inheritance comes
naturally, right in the
beginning.
2. Never have to show
something that can’t be
explained.
3. See right away how
things are reused.

Friday, January 15, 2010

Model for objects and classes

Manilla folder: an object or instance of the class

a0!

show() hide()!

setTitle(String) getTitle()!

getHeight() getWidth()!

setSize(int, int)!

getX() getY() setLocation(int, int)!

isResizable() setResizable(boolean)!

javax.swing.JFrame!

SquareJFrame!
area() {…}!

setHeightToWidth() { …}!

First class definition:
subclass of JFrame.
Reasons:
1. Inheritance comes
naturally, right in the
beginning.
2. Never have to show
something that can’t be
explained.
3. See right away how
things are reused.

Bottom-up rule says to search for a component
from bottom up. Gets overriding method, naturally.

Friday, January 15, 2010

The model for objects/classes allows
simple explanation of language concepts

a0!

C!

SC!

m(int p) {!

 int lv;!

 while (…) {!

 int n; … sv … n!

 }!

}!

v! 5!

6!

sv m() { ... }5!

SC’s file drawer

Inside-out rule
To determine the

declaration to which a
variable name refers, look
in the current construct,

then the surrounding one,
then the surrounding one,

etc., until it is found.

Similar rule for
method calls

Inside-out rule is used, with minor differences, in most
languages, including predicate logic

a1!

C!

SC!

m(int p) {!

 int lv;!

 while (…) {!

 int n; … sv … n!

 }!

}!

v! 2!

4!i! i!

Friday, January 15, 2010

Have first assignment require mastery:

Use a submission-feedback loop until everything is right

Allow you to establish some important ground rules with code that is
short and straightforward. No one gets penalized for misunderstanding.

1. Beginning programmers: not penalized for being confused.
2. “Experienced” programmers: not penalized for their bad habits.

• Precise, clear, complete specs on procedures/functions/methods
• Precise, clear, complete class invariant
• Appropriate test cases
• Proper indentation
• Correct program

Friday, January 15, 2010

Executing method calls

Force students to learn to
execute a method call by hand

• Will give them a concrete
understanding that they can’t
get otherwise.

• Later, it will be easy to see
that recursion actually works.

Friday, January 15, 2010

Executing method calls

method name: instr cntr scope box

parameters, local variables

template for frame for a call

Force students to learn to
execute a method call by hand

• Will give them a concrete
understanding that they can’t
get otherwise.

• Later, it will be easy to see
that recursion actually works.

Friday, January 15, 2010

Executing method calls

Contains name of object or name of
file drawer where method resides.

method name: instr cntr scope box

parameters, local variables

template for frame for a call

Force students to learn to
execute a method call by hand

• Will give them a concrete
understanding that they can’t
get otherwise.

• Later, it will be easy to see
that recursion actually works.

Friday, January 15, 2010

Executing method calls

Contains name of object or name of
file drawer where method resides.

method name: instr cntr scope box

parameters, local variables

template for frame for a call

Force students to learn to
execute a method call by hand

• Will give them a concrete
understanding that they can’t
get otherwise.

• Later, it will be easy to see
that recursion actually works.

When you first introduce the
topic, don’t you do the

execution. Show the students
the template for a frame for a

call, ask them to get out a
piece of paper, and have them

do it, step by step, in groups of
two.

Friday, January 15, 2010

Executing method calls

method name: instr cntr scope box

parameters, local variables

template for frame for a call

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

1. Draw frame for call

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

1. Draw frame for call m: s1 a5

y z

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call m: s1 a5

y z

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call m: s1 a5

y z 5

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

m: s1 a5

y z 5

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

m: s1 a5

y z 5

s2

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

m: s1 a5

y z 5

s2

6

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

m: s1 a5

y z 5

s2

6

s3

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

m: s1 a5

y z 5

s2

6

s3

6

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

m: s1 a5

y z 5

s2

6

s3

6

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

4. Erase the frame

m: s1 a5

y z 5

s2

6

s3

6

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

4. Erase the frame

m: s1 a5

y z 5

s2

6

s3

6

Friday, January 15, 2010

Executing method calls

public class C {
 private int x;
 public void m(int y) {
 s1: if (y != 0) {
 s2: int z= y+1;
 s3: x= z;
 }
 }
}

method name: instr cntr scope box

parameters, local variables

template for frame for a call
a5

 x 5 m(...)

C

v a5 v.m(2+3);

2. Store arg values in pars

1. Draw frame for call

3. Execute method body.
Look in frame for call for
names; if not there, use
scope box

4. Erase the frame

m: s1 a5

y z 5

s2

6

s3

6

Question: When is local variable z created?

Friday, January 15, 2010

Teaching programming skills

Many students have no idea how to go about developing a simple function.

/** = a string representation of this Company ... (complete spec) */
public String toString() {
 return type + " company " + name +
 (id >= 0 ?". Id " + id : "") +
 ". Founded " + year + ". Has " + employee +
 " employees. Owns " + owns +
 (owns != 1 ? " companies." : " company.");
}

Example: Student already had a 1-semester course in Matlab. Given clear
spec for this method.

Canʼt figure out how to write it without using nested if statement.
I was trying to write a series of conditional return statements.
What should the structure ultimately look like?

Friday, January 15, 2010

Teaching programming skills

My answer: Look at the structure of what is required: return:

 the type,
 the company name,
 the id, if it is there,
 the year it was founded,
 the number of employees it has,
 how many companies it has

Each piece may need some words around it,

Just write an expression for each piece, connect them with "+".
Build it up one piece at a time, testing to make sure each piece is
right.

Canʼt figure out how to write it without using nested if statement.
I was trying to write a series of conditional return statements.
What should the structure ultimately look like?

Friday, January 15, 2010

Teaching programming skills

My answer: Look at the structure of what is required: return:

 the type,
 the company name,
 the id, if it is there,
 the year it was founded,
 the number of employees it has,
 how many companies it has

Each piece may need some words around it,

Just write an expression for each piece, connect them with "+".
Build it up one piece at a time, testing to make sure each piece is
right.

Canʼt figure out how to write it without using nested if statement.
I was trying to write a series of conditional return statements.
What should the structure ultimately look like?

Thanks! It seems so simple I
can't believe I didn't think of it.

Friday, January 15, 2010

Integrated development/testing of methods

Students need to see you develop and test functions, using stepwise
refinement, interweaving coding and testing, and explaining your thought
processes —or asking them to help.

 /** = English equivalent of n.
 Precondition: 0 < n < 1,000,000.
 Examples:
 3: "three"
 45: "forty five"
 100: "one hundred"
 127: "one hunded twenty seven"
 1001: "one thousand one"
 999099: "nine hundred ninety thousand ninety nine*/
 public static String anglicize(int n)

Friday, January 15, 2010

Recursion is easier than loopsThree things needed:
1. Write a precise specification of function
2. Write the base case
3. Write the recursive case --try to express the answer to the problem
in terms of the same problem on a smaller scale.
Hints:
Discuss executing recursive function vs understanding it
Don’t do Towers of Hanoi or Factorial!
Do functions that process strings
Then ask students to do 5-6-10 similar ones. Practice makes perfect
Show them interesting problems:

Sierpinski triangles, Koch snowflakes, ...
Tiling Elaine’s kitchen
functions on integers
Quicksort

Demonstrate the development of recursive functions

Recursion: If you get the point, stop; otherwise, see Recursion.
Infinite recursion: See Infinite recursion.

Friday, January 15, 2010

Examples of recursive functionsCount number of ‘e’s in a string
Remove blanks from a string
Remove adjacent equal chars
Duplicate each character
Reverse a string
Tell whether a string is a palindrome
Compress a string with many adjacent equal characters (no digits).
 E.g. for "aaaaaaaaaaaabbaaaaaazzzz" produce "a12b2a6z4".

“Commafy” an integer, e.g. change int 35476934 to “35,476,943”
Add the digits of integer d together
Count the number of times digit 3 occurs in integer d
Reverse integer d, e.g. from 45637 produce 73654
Complement integer d, e.g. from 93723 produce 17387

Count number of people in an ancestral tree (or, number of females,
number of people with no descendants, etc.)

Friday, January 15, 2010

Examples of recursive functions

/** = sum of all integer values in obj.
 Precondition: obj is an object of one of the classes:
 Integer, Integer[], Integer[][], Integer[][][], etc.
 Examples: Below, a boldface integer like 4 represents an
 Integer object that contains that integer.
 For the argument 5, the value 5 is returned.
 For the array {1, 2, 3}, 6 is returned because 1+2+3 = 6.
 For the array {{1, 2, 5}, {3, 4}}, 15 is returned because 1+2+5+3+4
= 15.
 For the array {{{1}, {0, 3}, {}}, {{1,2,3}, {3}}}, 13 is returned
because 1+0+3+0+1+2+3+3 = 13.
 */
public static int intDeepSum(Object obj) {

Friday, January 15, 2010

Tiling Elaine’s 16 x 16 Kitchen

2n

2n

one 1 x 1 square of kitchen
is covered by a refrigerator

Tile the kithen
with L-shaped tiles

Friday, January 15, 2010

Tiling Elaine’s 16 x 16 Kitchen

2n

2n

one 1 x 1 square of kitchen
is covered by a refrigerator

Tile the kithen
with L-shaped tiles

Base case: 20 x 20 kitchen

Friday, January 15, 2010

Tiling Elaine’s 16 x 16 Kitchen

2n

2n

one 1 x 1 square of kitchen
is covered by a refrigerator

Tile the kithen
with L-shaped tiles

Base case: 20 x 20 kitchen

Recursive case: 2n x 2n kitchen:

How can we solve it in terms of 2n-1 x 2n-1 kitchens?

Friday, January 15, 2010

Tiling Elaine’s 16 x 16 Kitchen

2n

2n

one 1 x 1 square of kitchen
is covered by a refrigerator

Tile the kithen
with L-shaped tiles

Base case: 20 x 20 kitchen

Recursive case: 2n x 2n kitchen:

How can we solve it in terms of 2n-1 x 2n-1 kitchens?

Friday, January 15, 2010

Tiling Elaine’s 16 x 16 Kitchen

2n

2n

one 1 x 1 square of kitchen
is covered by a refrigerator

Tile the kithen
with L-shaped tiles

Base case: 20 x 20 kitchen

Recursive case: 2n x 2n kitchen:

How can we solve it in terms of 2n-1 x 2n-1 kitchens?

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

Let students know where the course is heading

We teach in basically a bottom-up style,
introducing one new “feature” at a time.
Bad for “global learners”, who need to
see the big picture.

Compensate by giving
overviews, show where

course is going

Friday, January 15, 2010

How to find material on what I talked about

David and Paul Gries. A Multimedia Introduction to
Programming Using Java. Springer Verlag, NY 2005.

Comes with a CD that has 250-odd 2-5 minute
lectures with synched animation. On the CD, we
can really concentrate on program development.

Webpage for current course.
www.cs.cornell.edu/courses/cs1110/2009fa/

You can get slides of lectures and labs, assignments,
etc.

Friday, January 15, 2010

Teach OO first

Two aspects to programming:
Structural/organizational
Procedural

Based on pedagogical
principals, I teach structural/

organizational aspect first: OO

Friday, January 15, 2010

Teach OO first

Two aspects to programming:
Structural/organizational
Procedural

1. Java expressions and assignment: int,
double, boolean, String

2. Objects --method calls.

3. Class definition (a subclass), with a
function decl. and a procedure decl.

4. Fields, constructors, getter/setters,
JUnit testing

5. JUnit testing, class Object, static
variables

Based on pedagogical
principals, I teach structural/

organizational aspect first: OO

Up to this point, the only statements they
know are method call, assignment, and return.

Friday, January 15, 2010

Teach OO first

Two aspects to programming:
Structural/organizational
Procedural

1. Java expressions and assignment: int,
double, boolean, String

2. Objects --method calls.

3. Class definition (a subclass), with a
function decl. and a procedure decl.

4. Fields, constructors, getter/setters,
JUnit testing

5. JUnit testing, class Object, static
variables

6. Methods: first look at if
 statements

7. super-this. Inside-out rule.
 Stepwise refinement

8. Constructors in subclasses.
 Stepwise refinement

9. Wrapper classes.
 Stepwise refinement

10. Recursion

11. Recursion

12. Casting, instanceof, function
equals

Based on pedagogical
principals, I teach structural/

organizational aspect first: OO

Up to this point, the only statements they
know are method call, assignment, and return.

Friday, January 15, 2010

